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Abstract: High-resolution imaging in turbid media has been limited by the 
intrinsic compromise between the gating efficiency (removal of multiply-
scattered light background) and signal strength in the existing optical gating 
techniques. This leads to shallow depths due to the weak ballistic signal, 
and/or degraded resolution due to the strong multiply-scattering background 
– the well-known trade-off between resolution and imaging depth in 
scattering samples. In this work, we employ a nonlinear optics based optical 
parametric amplifier (OPA) to address this challenge. We demonstrate that 
both the imaging depth and the spatial resolution in turbid media can be 
enhanced simultaneously by the OPA, which provides a high level of signal 
gain as well as an inherent nonlinear optical gate. This technology shifts the 
nonlinear interaction to an optical crystal placed in the detection arm (image 
plane), rather than in the sample, which can be used to exploit the benefits 
given by the high-order parametric process and the use of an intense laser 
field. The coherent process makes the OPA potentially useful as a general-
purpose optical amplifier applicable to a wide range of optical imaging 
techniques. 
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1. Introduction 

Light microscopy plays an indispensable role in advancing biological discoveries and 
diagnosing pathological states [1]. With recent developments, especially in emerging 
nonlinear optical microscopy techniques, imaging of optically thin specimens with 
diffraction-limited or even super-high resolutions has been made possible [2, 3]. However, 
when imaging microstructures in a three-dimensional (3-D) tissue environment, which 
exhibits even more interesting biological, physiological, and pathological dynamics and 
function, fundamental limitations become more evident, imposed on both the spatial 
resolution and imaging depth [4–6]. Due to the light scattering in most biological (optically 
turbid) samples, the coherent ballistic (unscattered or singly-scattered) photons that carry the 
most spatial information, and thus are used for high-resolution imaging, attenuate 
exponentially, becoming extremely weak at large depths. In contrast, the multiply-scattered 
light grows quickly and overwhelms the ballistic signals. These diffusing photons lose most 
of the information about their initial propagating direction (wave vector), which if not 
effectively rejected, can greatly degrade the imaging resolution. Therefore, the attainable 
imaging depth and resolution in scattering media rely heavily on the effectiveness of the 
imaging techniques for the detection of the ballistic photon signal against the multiply-
scattering background [7–9]. 

Currently, for 3-D optical imaging in scattering media, the detection of ballistic photons is 
achieved by using high-sensitivity photo-detectors along with a variety of optical gating 
methods, such as time gating [5, 10, 11], confocal gating [7, 9, 12], polarization gating [13, 
14], and coherence (effectively time) gating [15, 16], which help to reject the multiply-
scattered light background (in addition to the optical sectioning functions of these 
techniques). In these gating approaches, there exists an intrinsic limitation, i.e., the 
compromise between signal strength and background removal [7–9]. For instance, in confocal 
microscopy, a smaller pinhole rejects more multiply-scattered background light but at the 
expense of signal loss, whereas a larger pinhole (weaker gate) collect more ballistic photon 
signals, but these are compromised by a stronger multiply-scattered light background. This 
inevitably leads to a limited imaging depth due to weak signal, as well as a possible limited 
resolution due to the strong background. The resultant well-known trade-off between 
resolution and imaging depth affects nearly all of the current ballistic photon imaging 
techniques, including confocal microscopy, optical coherence tomography (OCT), and time-
gated imaging in scattering media [7–9]. 

In this study, we exploit nonlinear optics principles to overcome this limitation. The 
adoption of nonlinear optical processes, such as two photon excitation [17], second harmonic 
generation [18], and coherent Raman scattering [19, 20], has dramatically advanced optical 
imaging and light microscopy by providing unprecedented (sub-diffraction limited) resolution 
and new contrast-enhancing capabilities [21]. In these nonlinear optical imaging approaches, 
high intensity lasers are commonly employed to generate the nonlinear interactions within the 
sample under investigation. Considering the potential photo-damage to the sample [22, 23], 
especially biological tissues, these approaches have hindered us from fully exploiting the 
benefits given by high-order nonlinear processes, which require stronger and more intense 
laser fields. To overcome this limitation, we shift the location of the nonlinear interaction out 
of the sample and into an external optical crystal placed in the signal detection regime so that 
we can effectively use high intensity lasers and fully exploit the benefits offered by high-
order nonlinear optics. By introducing a specially designed optical parametric amplifier 
(OPA) [24–26], we demonstrate that both the depth and resolution in optical imaging in 
scattering media can be improved. The OPA provides not only a high level of optical signal 
gain, but also a nonlinear optical gate, which improves both the detection of the image-
bearing ballistic photons signals (enhancing imaging depth) and the rejection of the multiply-
scattered light background (preserving high resolution). Improved signal detection sensitivity, 
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spatial resolution, and imaging depth are investigated and demonstrated by imaging ex vivo 
biological samples and standard resolution targets in the presence of scattering media. We 
investigate the coherent nature of the parametric process, which enables the OPA to preserve 
the properties of the signal photons, suggesting the potential use of the OPA as a general-
purpose amplifier applicable to a wide range of optical imaging and sensing technologies. 

2. Principle 

The principle of our OPA is based on a second order optical nonlinear process [24, 25]. 
Initiated by quantum fluctuations, an input pump photon on the crystal is divided into two 
daughter photons, called the signal and idler by convention, with the sum of their energy 
equal to that of the pump. Any photon subsequently incident on the crystal at the same 
frequency as the OPA signal will be amplified under phase-matching conditions with its 
coherence properties preserved, accompanied by the generation of an idler beam. For the 
amplification of weak light signals, the OPA has distinct advantages including a high gain 
over just a few millimeters of interaction length in a nonlinear crystal, and an excellent noise 
figure down to the quantum limit (as low as 0 dB when operated in a phase-sensitive mode 
and 3 dB in a phase-insensitive mode) [27,28]. The coherent nature of OPAs enables the 
optical properties of signal photons to be preserved and retrieved through post-amplification 
measurements. This makes OPA particularly suitable for amplifying weak signals for optical 
imaging and sensing, where the information of interest is embedded into the parameters of the 
spatially-coherent signal photons. Implementation of OPA to improve the performance of 
optical imaging has been demonstrated by a few groups, despite the limited spatial resolution 
(in the order of tens of microns) [29–32]. 

In addition to the high signal gain, the OPA automatically forms a nonlinear confocal 
gate, which is attributed to the nonlinear property of the OPA process and the unique 
geometry of our setup (see Fig. 2). According to the principle of a second-order nonlinearity-
based three-wave mixing parametric process [24–26], under perfect phase matching and in 
the large gain approximation, the intensity of the amplified signal by the OPA is 
approximated by 

 1
4 0 exp(2 ),s s pI I L I  (1) 

where   is a crystal related constant for fixed frequencies of pump and signal, 0sI is the 

intensity of the input signal, pI is the intensity of the pump, and L  is the phase-matching 

length. Due to the high-order dependence of the amplified signal on the pump and incident 
signal intensity, the nonlinear interaction is confined within the focal region, resulting in a 
spatial filter to the transmission of the signal light, i.e., a virtual pinhole, analogous to other 
nonlinear imaging methods [17, 19, 21, 33]. However, this nonlinear optics-based confocal 
gate is formed within the crystal placed in the image plane, instead of in the focal region 
within sample, as in most of the existing nonlinear optical imaging techniques [17–21]. 
Therefore, this unique scheme has a higher tolerance to photo-damage, and enables us to fully 
exploit the benefits given by the high-order optical parametric process and the use of stronger 
laser fields. It is indeed the higher nonlinearity that makes the OPA confocal gate 
advantageous over traditional optical gating approaches (see late sections for detailed 
discussion). 

As shown by the diagram in Fig. 1a, the beam waist of the amplified beam is smaller than 
that of the input signal beam, which is due to the spatially-varying amplification ratio, i.e., a 
larger gain at the center region and a smaller gain at the peripheral region, which functions 
like a spatial filter and thus shapes the beam profile of the amplified beam. To give a 
quantitative illustration, we simulated this effect based on a Gaussian beam propagation mode 
as follows. 
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Fig. 1. Confocal effect of the OPA. (a) Geometry of the signal beam focus in the crystal.  
(b) Calculated signal beam profiles before (at / 2z d  ) and after (at / 2z d ) the amplification. 
(c) Calculated diameter of the OPA virtual pinhole (

vpd ) at different pump intensities.  

(d) Calculated signal strengths of the amplified signal beam at different pump intensities. 

We assume both the signal beam prior to amplification and the pump have a Gaussian 
distribution, which is given by 

      
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 , and ,j p s , representing the pump and 

signal beams. 
In our setup, the depth-of-focus for each of the two beams is comparable to the thickness 

of the crystal (0.5 mm), and the group delay mismatch lengths (~1.2 mm) for both the signal 
beam and idler beam are larger than the crystal thickness. Therefore, the continuous plane-
wave based amplification relationship in Eq. (1) is still a valid approximation to simulate the 
amplification process [25]. Accordingly, the amplified signal beam can be obtained by 
substituting Eq. (2) into Eq. (1) and integrating over the full thickness of the crystal, i.e., 

      

2 2/2
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0, 2
/2

4 ( , )
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z d
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s s
s sz d
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  (3) 

where  ,pI r z  is given by Eq. (2). 

The two-dimensional profiles of the input (before amplification) and the output 
(amplified) signal beams at the entrance ( / 2z d  ) and exit ( / 2z d ) surfaces were 
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numerically calculated based on Eq. (3) [Fig. 1(b)], showing the beam shrinking effect of the 
amplification process. Figure 1c shows the calculated diameters of the OPA virtual pinhole at 
different pump intensities, which was defined by the full width of the beam waist of the 
amplified signal beam at the exit surface of the crystal ( / 2z d ). A decreased pinhole size 
with an increase in pump intensity is observed. It is expected that this decreased pinhole size 
contributes to the efficient removal of the multiply-scattered light background, as shown by 
the experimental results presented later. Although the smaller pinhole may give more 
attenuation of the ballistic signal [7–9], this is compensated by the high optical gain of the 
OPA process. As shown by Fig. 1d, the amplified signal beam gets stronger when higher 
pump intensities are used, even though the pinhole size is smaller. In practice, if a higher 
signal is preferred, the pinhole can be enlarged by using a pump beam geometry with a larger 
focal size. 

Qualitatively, the unique nature of the OPA confocal gate can also be explained by the 
exponential dependence of the amplification signal on the pump and input signal intensities. 
Due to this exponential relation [Eq. (1)], for a higher pump intensity, a higher order process 
is expected, which leads to a stronger spatial confinement and thus a smaller virtual pinhole. 
And at the same time, the stronger pump results in a higher amplification ratio and thus a 
higher signal. It should be noted that this is clearly distinctive from conventional optical 
gating approaches, which have inevitable compromise between gating efficiency and signal 
strength, suggesting the unique advantages provided by the OPA nonlinear confocal gate over 
linear gating approaches in high resolution imaging of structures in scattering media and/or 
biological tissue. While the fundamental compromise between gating efficiency and signal 
strength has been limiting the application of all these linear gating methods in deep tissue 
imaging, the simultaneous enhancement in both the background-removal (gating efficiency) 
and signal-strength improves the imaging performance of the structures deep in scatting 
tissue, as shown by the experimental results in the following section. 

3. Experimental results and discussion 

3.1 Experimental setup 

The experimental setup is shown in Fig. 2. A 250 kHz Ti:sapphire regenerative amplifier 
system (RegA 9000, Coherent) was used, which outputs 100 fs, 800 nm laser pulses with 
energies of approximately 4 µJ. The input pulses were divided into two portions by a 75:25 
beam splitter. The stronger portion, about 3 µJ, was focused into a 0.5 mm thick type I beta 
barium borate (BBO) crystal for frequency doubling to generate 400 nm pulses, which were 
used as the pump of the OPA. The weaker portion, approximately 0.7 µJ, was focused into a  
1 mm thick sapphire plate to generate a white-light super-continuum (SC). After passing 
through a short-pass (cutoff at 750 nm) and a band-pass filter (620 ± 30 nm), the SC was 
focused by an objective onto the sample and the back-reflected light was collimated by the 
same objective. The incident power onto the sample was controlled by two variable neutral 
density filters. Both the collimated signal (sample) and pump beams, with separately 
controlled delays, were combined co-linearly after a dichroic mirror, focused (by a  
f = 100 mm lens) and mixed in another 0.5 mm thick type I BBO crystal to generate the 
optical parametric process. Subsequently, the signal and pump pulses were separated, 
collimated, directed through different delay lines, and mixed again in the same crystal for a 
second round of optical parametric amplification. 
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Fig. 2. Schematic of the OPA setup for optical imaging. BBO: beta-barium borate crystal; 
BPF: band-pass filter; BS: beam splitter; DC: dichroic mirror; DL: delay line; NA: numerical 
aperture; NDF: neutral density filter; SA: sapphire crystal; SHG: second harmonic generation. 

3.2 OPA gain and SNR enhancement 

The amplified signal was collected by 10 × objective and coupled into an optical fiber (either 
multimode or single mode depending on the requirement of specific experiments). For 
spectroscopy, the fiber was connected to a fiber-based spectrometer (QE65000, Ocean 
Optics). For imaging acquisition, the fiber was connected to a photomultiplier tube (PMT, 
H5783, Hamamatsu). The output signal of the PMT was first amplified by a lock-in amplifier 
(SR844, Stanford Research Systems) and then was digitized by a data acquisition (DAQ) card 
(PCI-6115, National Instruments) controlled by a Labview interface. Unless specified, in all 
the imaging experiments in this work, the same PMT, lock-in amplifier, and DAQ card were 
used. Images were formed by scanning the sample mounted on a 3D translation stage, which 
was synchronized by the same software. 

Specific considerations were made in the design of this OPA setup. Due to the dispersion 
property of the nonlinear crystal, the phase-matching condition of OPAs can only be met 
within a small acceptance angle [25, 32]. In wide-field optical imaging schemes, this leads to 
a finite bandwidth of spatial frequencies that are amplified, thus limiting the achievable 
spatial resolution (typically on the order of tens of microns, rendering it unsuitable for 
applications in microscopy) [29–32]. In our experiments, we use relatively high repetition rate 
(resulting in relatively low-energy pulse energy) laser pulses to investigate the feasibility and 
potential of using the OPA for point-scanning microscopy, overcoming the previous 
limitations of OPA imaging in spatial resolution (wide-field mode), and in low imaging speed 
and/or shot-to-shot fluctuations of signals arising from the use of high energy laser pulses at 
low repetition rates (less than 1 kHz) [30, 34]. To obtain high optical gain based on the low 
energy pulses, we focus the pump beam into the BBO crystal under a relatively tight focusing 
condition, which is determined by the optimal balance between the pump intensity (requires 
short focal length and tight focusing) and the acceptance angle requirements of the crystal for 
phase-matching (constrains the angle of the focused beam). In addition, a double-pass 
amplification scheme was employed to enhance the signal gain. As discussed in the following 
sections, the unique design of our OPA shows additional features, such as the nonlinear 
confocal gating, which offers important advantages for imaging highly scattering biological 
samples. 
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Fig. 3. OPA gain and imaging. (a) Supercontinuum spectra measured without (pink) and with 
(blue) the presence of the OPA pump. (b) Supercontinuum spectra measured without 
amplification (signal) and with the OPA tuned to three different central wavelengths (620 nm, 
637 nm, and 660 nm). (c-e) Reflection-mode images of onion skin obtained based on reflected 
signals with (c) and without (d and e) the OPA gain. The same incident power (76 nW) was 
used for (c) and (d), and increased (290 × higher) power (22 µW) was used for (e), 
respectively. A 0.5 NA objective was used to acquire all of the images. Intensities of the 
images (c-e) were normalized. The scale bar in (d) represents 100 µm, and applies to all 
images. 

The signal gain provided by the OPA [Fig. 3(a)] was first measured by placing a silver 
mirror at the focus of the objective (numerical aperture (NA) of 0.25). Signal amplification of 
~7000 × (38 dB) is observed at the peak wavelength of 637 nm, which is widely tunable 
(from ~480 nm to ~720 nm) by changing the angle of the BBO crystal and the delay between 
the pump and signal beams [Fig. 3(b)]. The bandwidth of ~15 nm is determined by the 
bandwidth of the pump and phase matching within the crystal. It is worthwhile to note that a 
much broader gain bandwidth can be achieved based on other types OPA geometries, such as 
non-collinear OPAs [35, 36]. 

With the high level of signal gain provided by the OPA, the detection sensitivity of the 
current system is improved by more than two orders of magnitude, reaching the calculated 
quantum-noise limit (~3.1 fW at an integration time of 0.1 ms and a wavelength of 637 nm). 
Due to the increased sensitivity and signal-to-noise ratio (SNR), image quality is improved by 
the OPA, as shown by the comparison of the onion skin images obtained with and without the 
OPA [Figs. 3(c)-3(e)]. A clear image [Fig. 3(c)] is recovered by the OPA imaging out of the 
noisy, featureless background [Fig. 3(d)]. It should be noted that despite the comparable 
quality of the two images [Figs. 3(c) and 3(e)], a significantly reduced (290 × less) incident 
light power was used for Fig. 3(c) (76 nW) than for Fig. 3(e) (22 µW). Since the maximum 
incident optical power and thus the signal are restricted by the damage threshold of the 
sample, the improved SNR by the OPA is desired in nearly all biomedical imaging 
investigations, where the use of low incident power in the OPA imaging mode is of particular 
value to reduce the potential photo-damage to the biological systems. 

This high sensitivity is achieved because the OPA amplifies the desired signals with 
negligible excess noise [27, 28], raising them well above the noise floor of the electronic 
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detectors. The improvement in sensitivity is further manifested by the results in Fig. 4a, 
where the temporal fluctuations of signals with and without amplification by the OPA are 
represented. The signals were measured with a silver mirror placed at the focus of a 0.25 NA 
objective and with a incident power of ~8 nW. It can be seen that without the OPA, the output 
of the detector is very close to the noise floor, with an SNR of 1.01:1, whereas the output 
signals with the OPA are much higher, well above the noise floor, and with an SNR of 182:1. 

 

Fig. 4. Time sequences (1.0 s) of signals reflected from a silver mirror placed at the focal plane 
of a 0.25 NA objective. (a) Unamplified (pink) and OPA-amplified (blue) signals, and the 
noise floor (black), with an incident power of 8 nW. (b) Unamplified signals with an incident 
power of 14 µW (approximately 1800 times higher than that used for the measurements in (a). 
The measurements were each averaged 50 times. 

To estimate the extra noise added by the OPA process, we increased the incident power to 
~14 µW [1800 × higher than the condition in Fig. 4(a)] to raise the amplitude of unamplified 
signals [Fig. 4(b)] so that they have a similar level as those amplified by the OPA [the blue 
trace in Fig. 4(b)]. By comparing the SNRs of the signals represented by the blue trace in  
Fig. 4(a) (the OPA amplified signals with low incident power) with those in Fig. 4b 
(unamplified signals with increased incident power), we see an ~20% degradation in SNR 
given by the OPA amplification. The slight discrepancy from the theoretically predicted 3 dB 
noise (quantum noise) figure, which is associated with this phase-insensitive amplifier [27, 
28], could be due to the fact that the SNR of the signals (unamplified) in Fig. 4(b) are larger 
than the input SNR (presumed noise-free) used for calculating the theoretical noise figure. 
Because the same detection system was used for these measurements, and because there was 
no additional noise introduced by adjusting the incident power, the 20% degradation of SNR 
actually accounts for the contributions from all types of noise added by the OPA, which 
include the quantum noise and the amplification noise due to the pump laser fluctuations. 

In principle, the shot-noise limited detection sensitivity can potentially be reached with 
ultra-sensitive detectors, e.g. using super-cooled detectors of ideal (effectively 100%) 
quantum efficiency and working in photon-counting mode. However, this OPA setup has 
unique advantages in that it does not annihilate signal photons. Rather, it provides multiplied 
signals that can also be used for other imaging modalities and additional measurements. 
Moreover, as shown in later sections of this paper, the OPA is able to remove photon noise 
(given by the inherent optical gate), including scattered incoherent photons and environmental 
light, which is a significant challenge when using high-sensitivity electronic detectors. 

3.3 OPA confocal gating 

The confocal effect of the OPA imaging is first shown by the axial point spread functions 
(PSFs) [Fig. 5(a)], which were measured when translating a flat mirror through the focal 
region and along the propagation direction. Compared to conventional reflection-based 
(scattering-based) imaging, the OPA shows significantly improved axial resolution, which is 
measured to be 7.2 µm, and is consistent with the calculated confocal parameter (~6.5 µm) 
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based on an effective NA of 0.35 used in this case. The low axial resolution in the reflection 
mode is due to the large size of the detection system, determined by the core size (62.5 µm) 
of the multimode fiber which is 26 times the size of the Airy disk (~2.4 µm) of the focused 
signal beam. The axial resolution of the OPA imaging mode is also compared with a 
conventional confocal setup with a physical pinhole, which was generated by coupling the 
light into a single mode fiber [37, 38]. A slightly higher resolution is given by OPA imaging, 
which indicates that the diameter of the pinhole size is smaller than the diameter of the first 
minimum of the Airy disk of the focused signal beam [12, 39]. 

This automatic confocal effect of the OPA imaging technique offers both high axial 
resolution [Fig. 5(a)] and an optical sectioning capability, as in other optical gating 
approaches (such as traditional confocal gating [12, 40] and time gating [5, 11]). The 
capability of removing out-of-focus signals is demonstrated by the images of sub-resolution 
nanoparticles (TiO2) in a silicone gel obtained with and without the OPA [Figs. 5(b)-5(g)]. It 
is observed from these images that while uniform diffraction-limited PSFs are seen in the 
OPA-enhanced images [Figs. 5(b)-5(c), and Fig. 5(f)], both uniform and blurred patterns are 
observed in Fig. 5d, e, and g. The blurred PSF patterns are from sub-resolution particles 
located at out-of-focus planes, which were collected when no confocal gate was employed. 
However, the out-of-focus signals are efficiently rejected by the OPA confocal gate [12, 40], 
leaving only the uniform PSFs in the OPA-based images. The blurring effect is much stronger 
when the focal and imaging planes are deeper into the sample, which is attributed to the 
degradation of the resolution affected by the multiply-scattered light that gets stronger with 
the increase of imaging depth [Fig. 5(e)], as discussed later. 

 

Fig. 5. Confocal effects of the OPA imaging. (a) Axial point-spread-functions of different 
imaging modes measured by translating a silver mirror along the axial beam direction through 
the focus. Solid curve, OPA imaging; dashed curve, conventional confocal imaging; dotted 
curve, conventional reflectance imaging. (b-e) Images of sub-resolution (50 nm) nanoparticles 
(TiO2) embedded in a polydimethylsiloxane (PDMS) gel obtained in OPA imaging mode (b 
and c) and conventional reflection mode geometry (d and e). The imaging planes are 100 µm 
and 400 µm below the surface of the gel for images (b and d), and (c and e), respectively. An 
objective of 0.65 NA was used to focus light into the sample for all the images. Intensities of 
the images were normalized. The yellow box insets in the lower left corner of each image are 
magnified images of the yellow box regions in the upper right corner of each image. (f and g) 
Three-dimensional renderings of the images in the yellow box insets in (c) and (e), 
respectively, showing the improved (narrowed) point-spread-functions following OPA 
imaging. The scale bars in (b) represent 100 µm, and apply to all images. 

In scattering media, the imaging performance heavily relies on the use of optical gating 
approaches, such as confocal, time and polarization gates, to remove the resolution-degrading 
background. However, conventional gating methods have limited gating efficiency, thereby 
leaving a residual amount of multiply-scattered light in the measured signal [7–9]. To 
investigate this effect, we imaged a United States Air Force (USAF) target in the presence of 
scattering media, with both conventional confocal and OPA schemes (Fig. 6a-c). It is seen 
that in the conventional confocal images the lateral resolution is degraded in the presence of 
the scattering media, showing the effects of the residual multiply-scattered background. In 
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contrast, in the OPA images, the high resolution is preserved even in the presence of a 
scattering thickness up to 6 mean free paths (MFPs). This indicates that the OPA confocal 
gate is more efficient in rejecting the multiply-scattered light background. This is also 
confirmed by the OPA and conventional confocal associated axial PSFs in Fig. 6d, which 
were measured with the presence of scattering media (two sheets of lens paper). There is a 
sharp constrast observed that, the conventional confocal gate has a subtantially degraged 
whereas the PSF of the OPA gate is well preserved. 

Although, in principle, the background rejection efficiency in conventional confocal can 
be improved by using a smaller sized pinhole, this inevitably introduces more signal loss. The 
weak signal strength subsequently leads to the limited imaging depth in conventional confocal 
microscopy [second row in Fig. 6(a)]. However, in OPA imaging, the weak signal strength 
can be compensated for by the high signal gain, leading to an improved imaging depth, up to 
a factor of 2, as compared to more conventional confocal imaging in scattering media  
[Fig. 6(a)]. 

 

Fig. 6. OPA imaging and nonlinear confocal gating in scattering media. (a) Images of a USAF 
resolution target obtained in OPA imaging mode (top row) and in conventional confocal mode 
(bottom row) when an increasing number of lens paper sheets were placed on top of the sample 
to serve as scattering media. In each image, the larger central yellow rectangular inset shows a 
zoomed image of the smallest line group (a width of 2.19 µm for each bar in element 6 of 
group 7) located within the smaller yellow rectangular box region to the right. All images are 
intensity normalized. The scale bar in the lower right image represents 50 µm, and applies to 
all the images in (a). (b and c) Three-dimensional renderings of the images in the central 
yellow rectangular insets acquired when imaging the resolution target through 2 sheets of lens 
paper. (d) Axial point spread functions measured by translating a silver mirror along the axial 
beam direction and through the focus for OPA (solid curve) and conventional confocal (dashed 
curve) imaging geometries. Two sheets of lens paper were placed on top of the sample to serve 
as scattering media. 
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These results demonstrate that both the resolution and imaging depth can be improved 
simultaneously by the OPA, rather than having to compromise with the trade-off between 
them in conventional confocal gating [7–9]. This advance results from the high-order 
nonlinearity of the optical parametric process. As discussed in Section 2 (Principle), due to 
the nature of the exponential function, the higher the pump intensity, the higher order the 
relationship. As a result, a smaller pinhole size is expected with the increase of the pump 
intensity [21, 33]. Although a weaker signal is expected from the smaller pinhole, the 
recovered signal is actually increased due to the higher gain support by the higher pump 
intensity, as the shown by the solid curve in Fig. 4(d). It should be noted that despite the 
favorable benefits given by the OPA with a stronger pump, the pump intensity cannot be 
infinitely increased, because of the more noise likely introduced with a higher pump [41]. 
Although this is also restricted by the photo-damage to the optical crystal, the damage 
threshold of the BBO crystal is up to 100 GW/cm2 for 100 fs pulses, more than an order-of-
magnitude higher than biological samples [22, 23]. The OPA pinhole size also depends on the 
beam waist of the pump beam focus, which can be adjusted accordingly if a larger pinhole is 
preferred. 

The attenuation of ballistic photons by lens paper (used as scattering media for this study) 
was characterized in experiments (Fig. 7). The optical power of ballistic light transmitted 
through a given number of sheets of lens paper was measured with a power meter placed in 
the far field after an iris, and the results were fit with an exponential decay 

model, ~ exp( )
0.49

x
P  , where P  is the power of the ballistic light and x  is the number of 

sheets of lens paper. Accordingly, it is calculated that 6 sheets of lens paper attenuate ballistic 
photons by 52 dB, corresponding to a MFP of up to 12. 

 

Fig. 7. Measurements of attenuation of ballistic photons by lens paper. (a) Plot of the power of 
ballistic light versus number of sheets of lens paper. (b) Photograph of the far-field pattern of 
transmitted light through three sheets of lens paper. The bright spot at the center of the image 
(arrow) is the ballistic light pattern. 

3.4 Imaging of ex vivo biological samples 

Performance of the OPA for imaging biological samples is demonstrated by imaging a fresh 
rat muscle tissue with both OPA and conventional confocal setups (Fig. 8). As shown by the 
comparison in Figs. 8a and b, in contrast to the conventional confocal imaging configuration, 
OPA imaging demonstrates enhanced visualization of structures deep in the tissue with both 
higher resolution and larger penetration depth. The increased imaging depth indicates that the 
enhanced detection sensitivity by the OPA enabled a more efficient detection of the image-
bearing signals coming from larger depths. The improved the resolution is attributed to the 
enhanced suppression of the multiply-scattering background due to the stronger optical gate 
(smaller pinhole) formed by the OPA. This is also manifested by the results in Fig. 8c, where 
the signals averaged over the field-of-view of the images of both OPA and conventional 
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confocal at different tissue depths are reproduced. The faster decay from the OPA image 
indicates that a stronger gate is generated, so that less scattered photons are collected [7, 8]. 

 

Fig. 8. Imaging of fresh rat muscle tissue at different depths below the surface. (a) Images 
obtained via OPA imaging. (b) Images obtained via conventional confocal imaging. In both the 
OPA and confocal imaging modes, the optical signal for image formation was coupled into a 
single-mode fiber with core size of 3.7 µm by a 10 × objective. An incident power of 16 µW 
was used for obtaining of all the images. Measured optical signals were attenuated by 180 and 
6.5 times for the first two images (captured at 40 µm and 120 µm depths, respectively) 
obtained in the OPA mode (A) to be similar to the corresponding images shown without the 
OPA gain (b). An objective of 0.5 NA was used for all the images. The pseudo colormap was 
set to span from 0% to 97% of the signal levels present in each image. The scale bar represents 
100 µm, and applies to all the images. (c) Signal strengths averaged over the full field-of-view 
of each images at different depths obtained with the OPA (circles) and conventional confocal 
(diamonds) imaging modes. 

3.5 Time gating and amplified resolution 

Time-gated imaging is also provided by the OPA, which has been investigated by a few other 
groups and thus not particularly discussed in this paper [30, 32, 39, 42]. In our experiments, 
the time gate is determined by the pulse width of the 100 fs pump pulses, which has depth-
resolved imaging capabilities analogous to OCT [11, 15]. Because high NA objectives were 
used in most of the experiments discussed in this paper, the effect of the 100 fs OPA time 
gate is much weaker than that of the confocal gate. It should be noted that although the OPA 
time-based gating, as well as other types of time gating approaches (such as a Kerr gate), are 
based on nonlinear processes, rather than the unique features in the OPA confocal gate, these 
time-gating functions are still restricted by the trade-off between gating efficiency and signal 
strength [5, 10, 11]. 

It has been shown by previous work that when using OPA to enhance optical imaging, 
especially in the wide-field imaging schemes [29–32], the spatial resolution was severely 
limited by the phase-matching in the OPA crystal to a level no better than tens of microns. In 
contrast, our experiments demonstrated, for the first time, high (cellular) resolution OPA 
imaging. From the comparison of all the images obtained with and without OPA [Figs. 3(c)-
3(e), Figs. 5(b)-5(g), Figs. 6(a)-6(c), Figs. 8(a) and 8(b)], no resolution degradation is 
observed with the use of the OPA. This indicates that the spatial frequency bandwidth of the 
imaging system is not narrowed by the amplification process, which is attributed to the 
unique geometry of the OPA setup. Considering the intrinsic coherent nature of the 
parametric process, which enables the optical properties of signal photons to be  
preserved [24–26], these results also suggest that OPA can potentially be used as a general 
purpose optical amplifier for many other imaging modalities such as OCT [15],    
fluorescence [43, 44] and Raman scattering microscopy [19, 20]. When applied to the 
detection of fluorescence or spontaneous Raman scattering singals, the OPA may help to 
selectively amplify the coherent early-arriving photons against the incoherent late-coming 
photons. 
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4. Conclusion 

In summary, it is demonstrated that a specially designed OPA scheme can be used to enhance 
high-resolution, depth-resolved imaging in optically turbid media. The compromise between 
gating efficiency and signal strength in conventional optical gating in imaging of the light 
scattering tissue can be alleviated by the OPA, which provides a high level of optical gain and 
a nonlinear optical gate to effectively enhance both the detection of weak ballistic signals and 
the rejection of multiply-scattered background light. This benefit is enabled by the unique 
strategy of harnessing high-order nonlinear optics, where the interaction is placed in an 
external crystal in the detection arm of the system. For biomedical imaging, where the 
potential for photo damage is particularly high, this technology is preferable because it 
obviates the need for tightly focusing high intensity laser light within the sample to generate 
the nonlinear process. The coherent nature also enables the OPA to preserve the intrinsic 
properties of the signal photons (amplitude, wavelength, phase, polarization, and wave vector 
or spatial frequency), which implies general applicability of the technology for many other 
types of optical imaging modalities. Given the demonstrated optical parametric amplification 
experiments using low average power laser oscillators and optical fibers [45, 46], we note that 
this technology can be potentially implemented on lower-cost fiber based systems. 
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