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Background and Objective: Sarcomas are rare but
highly aggressive tumors, and local recurrence after
surgical excision can occur in up to 50% cases. Therefore,
there is a strong clinical need for accurate tissue
differentiation and margin assessment to reduce incom-
plete resection and local recurrence. The purpose of this
study was to investigate the use of optical coherence
tomography (OCT) and a novel image texture-based
processing algorithm to differentiate sarcoma frommuscle
and adipose tissue.
StudyDesignandMethods: In this study, tumormargin
delineation in 19 feline and canine veterinary patients was
achieved with intraoperative OCT to help validate tumor
resection.While differentiation of lower-scattering adipose
tissue from higher-scatteringmuscle and tumor tissue was
relatively straightforward, it was more challenging to
distinguish between dense highly scattering muscle and
tumor tissue types based on scattering intensity and
microstructural features alone. To improve tissue-type
differentiation in amore objective and automatedmanner,
three descriptive statistical metrics, namely the coefficient
of variation (CV), standard deviation (STD), and Range,
were implemented in a custom algorithm applied to the
OCT images.
Results: Over 22,800 OCT images were collected intra-
operatively from over 38 sites on 19 ex vivo tissue
specimens removed during sarcoma surgeries. Following
the generation of an initial set of OCT images correlated
with standard hematoxylin and eosin-stained histopathol-
ogy, over 760 images were subsequently used for auto-
mated analysis. Using texture-based image processing
metrics, OCT images of sarcoma, muscle, and adipose
tissue were all found to be statistically different from one
another (P� 0.001).
Conclusion: These results demonstrate the potential of
using intraoperative OCT, along with an automated tissue
differentiation algorithm, as a guidance tool for soft tissue
sarcoma margin delineation in the operating room. Lasers
Surg. Med. 49:240–248, 2017.
� 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Soft tissue sarcomas (STS) are aggressive, locally
invasive, malignant tumors that require wide excision as
the mainstay of treatment. In 2015, there were 11,930
estimated cases of STS in adult humans and 4,870
deaths [1]. The reported international incidence ranged
from 1.8 to 5 per 100,000 per year [2]. In a study by Shiu
et al. [3], out of 297 patients recruited for the study, 46%
were returning with locally recurrent disease, while the
remaining presented for initial therapy. Even higher
recurrence rates (53.1%) have been previously reported [4].
Current evaluation of STS relies on clinical history,
evaluation, lesion location, determination of mineraliza-
tion on radiographs, and signal intensity characterization
on magnetic resonance images [5]. Additional available
imaging modalities that have been used to evaluate STS
include ultrasonography, computed tomography (CT), and
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positron emission tomography (PET) [6]. However, pres-
ently, the use of only a single imaging technique offers a
somewhat limited evaluation since it cannot reliably
distinguish between benign and malignant soft-tissue
lesions in some cases, which leads to false positives and
the likelihood of unnecessary surgical procedures. Biopsies
of lesions are commonly performed following imaging to
differentiate between benign soft-tissue lesions and soft-
tissue sarcoma. There is often over-estimation of lesion
size, leading to imprecise surgical planning and resection
of increased amounts of tissue. Therefore, STS identifica-
tion and pre-operative surgical planning usually involves a
combination of the aforementioned imaging techniques.
Magnetic resonance imaging (MRI) has been used for

guiding the surgical resection of STS intraoperatively,
and the extent of the tumor on MRI was found to be
greater than suggested by clinical examination [7]. This
technique, however, is expensive, and constrains the
procedure to the location of the equipment. The current
gold standard for surgical margin assessment of STS is
post-operative histopathology, or in some surgeries,
intraoperative frozen-section histopathology obtained
during the time of the operation. However, the latter
technique is often limited to only one or two margin
assessments of small areas due to time constraints; thus,
reducing the confidence of clean margins and complete
tumor removal.
An imagingmodality that has the potential to be used for

tissue differentiation during and immediately after tumor
resection is optical coherence tomography (OCT). This
label-free imaging modality can be used in situ to visualize
large surface areas of tissue microstructure within
seconds [8–12]. In a study by Wang et al., liposarcomas
(sarcoma occurring in adipose tissue) and adipose tissue
were compared, as well as skeletal muscle with leiomyo-
sarcoma (a sarcoma occurring in smooth muscle), via
individual A-line computational analysis from OCT im-
ages. All tissue samples were taken from surgical
resections and a total of six specimens from six patients
were imaged within 12hours [10]. In their analysis, the
A-line slope was linearly fitted and removed, and the STD
of the intensity signal was then calculated, followed by a
fast Fourier transform to provide amplitude information of
the spatial frequency spectrum, which in turn was used for
a Beer–Lambert law exponential fit. Different measure-
ments were acquired from regions of adipose, liposarcoma,
skeletal muscle, and leiomyosarcoma tissue. Results
indicated a higher optical attenuation coefficient for
liposarcoma compared to adipose tissue, and noted smaller
attenuation differences between skeletal muscle and
leiomyosarcoma tissue [10]. In our current study, analysis
of entire B-scans is performed, with additional information
provided by texture-based features that appear from
adjacent and local A-line data. While the previous study
investigated A-line data below the air-tissue interface, the
segmented B-scans in this current study include the tissue
surface, which is particularly important for assessing the
surgical margin, one of the main goals of this study.

Intrinsic texture properties of speckle in OCT images of
normal and tumor tissues have also been studied [11]. In
this referenced study, OCT pixel intensity distribution
within a region of interest (without log-compression) were
represented as a histogram. Then, for optimal histogram
comparison of many images, a fixed binning of the
distribution was applied based on the Shimazaki method.
The histograms were then fitted using the least square
method, and in an analogous manner to high frequency
ultrasound, a ratio of parameters was determined,
proportional to the effective tissue scatterer number
density, and related to cellular changes that affect the
scattering properties of the tissue in question [11]. With
their method, they were able to differentiate between
normal and tumor tissues in vivo in a mouse xenograft
model.

In a recent study from our group, intraoperative OCT
was used for the in vivo assessment of human breast tumor
margins, and compared to post-operative histopathology
as the gold-standard. OCT was found to have a 92%
sensitivity and a 92% specificity for identifying positive
and negative margins [12]. These early successful intra-
operative studies in breast cancer have motivated the
investigation of using intraoperative OCT for other solid
tumor surgeries, especially those such as STS,which suffer
from high re-operation rates and high local recurrence
rates.

Prior to applications in humans, we conducted this study
involving STS in feline and canine veterinary medicine
patients, with the goal of gaining insight into the OCT
image properties of soft tumor sarcomas and their margin
delineation in normal soft tissues, primarily muscle. The
incidence of STS in feline and canine patients (17 and 35
per 100,000, respectively [13]) is approximately 10 times
greater than in humans, and the use of OCTwould not only
benefit these veterinary patients (health and preventive
approach) and their owners (stress and budget savings),
but also allow for a straightforward translation to
intraoperative human studies.

In animals, injection-site-associated sarcomas develop
as several histological sub-types including fibrosarcoma,
rhabdomyosarcoma, extra-skeletal osteosarcoma, chon-
drosarcoma, and histocytic sarcoma, and they all are
known to characteristically spread invasively into sur-
rounding tissue [14]. Cats biologically respond to inflam-
mation by fibroblast proliferation and have a higher rate of
tumorigenesis compared to dogs [14]. Feline injection site
sarcomas (FISS) are locally invasive tumors, and their
complete removal has been associated with longer tumor-
free interval and survival time compared to those with
positive or incomplete margins [15]. However, despite
determination of negative surgical margins using current
post-operative histopathology assessment methods, a
recurrence of 14–36% has been observed [13–15]. Current
post-operativemargin assessmentmethods usually under-
sample the total margin due to time constraints and
feasibility. This spatial under-sampling of the surgical
margins likely accounts for the high recurrence rate.

INTRAOPERATIVE OCT OF SOFT TISSUE SARCOMA 241



OCT image textures of various tissue types are often
challenging to characterize because tissues are frequently
heterogeneous. This heterogeneity can be attributed to cell
and tissue microstructure, structural orientation, cellular
density, and tissue hydration level, among others. The
various textures of tissue microstructure that appear in
OCT images can, however, contain important cues for
tissue type detection and diagnosis that are not always
discernible visually by the human eye. Other statistical
metrics and algorithms have also been investigated to
quantify differences in tissue types [16,17]. For example,
statistical parameters and filters such as mean, STD, and
range of local scattering variations have been applied in
OCT volumes to segment dense collagen, loose collagen,
and normal myocardium in human atrial tissue [17], and
classification results are often then color coded. Texture
feature extraction has also been demonstrated using a gray
level co-occurrence matrix in which the classification is
achieved by extracting the spatial relationship of pixels
in the matrix [18], then statistical features such as
contrast, correlation, energy, and homogeneity can be
calculated [19].

In this study, intraoperative OCT images of tissue types
present in areas near or within STS were obtained from
ex vivo specimens collected during STS surgeries, and these
were used to develop an image processing-based statistical
algorithm to compare sarcoma, muscle, and adipose tissue
types, with the future goal of delineating tumor margins
in vivo in the operating room. To test whether or not OCT is
a viable tool for tissue differentiation between soft-tissue
sarcomas and tissues that surround a sarcoma in vivo (i.e.,
adipose andmuscle tissue), a two-step process comprised of
a learning phase and a comparison phase was employed. In
the learning phase, a data set which comprised of images
with known tissue type labels was generated, accomplished
by correlatingOCT imageswith correspondinghistology. In
the second phase, each tissue type was compared using the
means of three statistical parameters: CV, STD, andRange,
over the intensity values in the given OCT images. This
comparison showed statistically significant differences
between the tissue types in the OCT images.

MATERIALS AND METHODS

Tissue Acquisition and OCT Imaging

Animal tissues were acquired under protocols approved
by the Institutional Animal Care and Use Committee at
the University of Illinois at Urbana-Champaign. For this
study, ex vivo tissue specimens were collected intra-
operatively from 17 dogs and 2 cats (client-owned) which
were undergoing resection of a STS or FISS.Histologically,
since no microstructural differences between feline and
canine soft tissues (adipose, muscle, and soft tissue
sarcoma) were observed, for the purpose of this study,
the feline and canine tumors were considered together.
The tissues were imaged with OCT to generate the sets of
OCT images with corresponding histological images
encompassing three primary tissues types: tumor (STS),
muscle, and adipose. The tissues and tumors were excised

by an American College of Veterinary Surgeon (L.E.S.)
board-certified in small animal surgery.
A commercial spectral-domain OCT imaging system

(Envisu C2300, Bioptigen) was used to generate three-
dimensional volumetric scans of the areas of interest in the
tissues. With a central wavelength of 1,310nm and an
incident illumination power of�5mW, the systemwas able
to image with �8mm axial resolution, �10mm lateral
resolution, and to an imaging depth of �1–2mm, depend-
ing on the optical properties of the tissue. OCT imaging
was performed in the operating room and/or adjacent
imaging room, immediately after tissue resection. Each
B-scan had physical dimensions of 5mm (lateral)� 2mm
(depth), represented by 600� 257 pixels, respectively. The

Fig. 1. Image processing flowchart. Out of 600 images acquired
from each imaged site, 10 were selected, ensuring that there was
an adequate separation between the chosen images. Segmentation
maskswere then generated by choosing areas of interest, avoiding
areas of saturation and background noise. An active contour was
then applied to every mask. A sliding window (yellow box) was
applied over every image to determine the statistical metrics of
Coefficient of Variation, Standard Deviation, and Range. The
results were thenmultipliedwith eachmask and overlaidwith the
original frame. Statistical comparisons between tissue types were
made between these resulting B-scan images.
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tissue was placed in a Petri dish and positioned on a
mounted micrometer positioning stage. The sample arm
beam was positioned over an area of interest. Typically,
2–4 areas per resected specimen were imaged, depending
on the available tissue types per specimen. The imaging
goal was to acquire images from at least one area where a
sarcomawas suspected to be present (determined by visual
inspection and manual palpation), and other areas which
contained other tissue types. In the sample arm of the OCT
system, lateral beam scanning was performed with
galvanometers, passing the OCT beam through a fixed
focus objective lens to volumetrically scan the selected
tissue (5� 5� 2mm3) at 7.4 frames/second (6 kHz A-scan
rate) via raster collection of B-scans along the x–y plane.
The imaged area corresponded to 600 sequentially-
acquired and adjacent OCT images, and required approxi-
mately 1 minute to capture the image data at each site.
Following OCT imaging, the selected areas weremarked

with surgical ink applied in a U-shape on the specimen
surface to delineate the imaged area, which was then used
for histology/OCT co-registration. Surgical inkwas applied
with a toothpick and allowed to dry for 5 minutes. The
specimens were then placed in 10% neutral buffered
formalin. In addition to standard histopathological proc-
essing and margin assessment, the inked areas were
histologically sectioned and stained for correlation with
OCT images.
An American College of Veterinary Pathology (ACVP)

board-certified pathologist (J.S.) acquired multiple histo-
logical tissue sections from the same location and plane as
the OCT B-scans. Each �3mm-thick tissue section was

stained with hematoxylin and eosin (H&E) and digitized
with a digital slide scanner (NanoZoomer 2.0 RS,
Hamamatsu C10730). The pathologist performing the
standard tumor histopathology and assessment of the
inked regions was blinded to the results of the OCT
imaging. Tissue sections were classified as sarcoma,
adipose, or muscle tissue based on the predominant cell/
tissue type present within the section. When multiple
tissue types were present, boundaries were noticeably
distinct with little intermixing of cell types in any region.

Image Processing and Statistical Analysis

Light scattering from tissue is dictated by the morpho-
logical and biochemical features of the tissue, and
variations in optical scattering are represented in the
OCT images. The most commonly observed tissue types
within the resected specimens were STS, muscle, and
adipose. A series of 600 consecutive OCT images were
acquired in each 5� 5mm2 area imaged. Then, 10 non-
consecutive frames (separated by at least 500mm) were
further selected to be used as input for the statistical
analysis. The selected frames were chosen based on image
quality, avoiding image artifacts such as those from strong
reflections that resulted in sensor saturation. The require-
ment to select 10 images with at least 500mm separation
was applied to each imaged area. The choice of sampling at
least every 500mmwas based on the empirical observation
that the different OCT images would appear structurally
different, implying a different area of the tissue. Images
were primarily excluded from further analysis if the tissue
surface or fluid collection at the surface was flat, with the

Fig. 2. Physical (histology) and textural (OCT) properties of (A) sarcoma, (B) muscle, and
(C) adipose tissue with corresponding OCT images (D–F, respectively). The top row shows H&E-
stained digitized histological images of the resected tissue, and the corresponding OCT images are
shown in the bottom row. The dashed red boxes in the OCT images correspond to the dimensions of
the histology images. The black scale bars across the bottom of each image in (A–C) represent
500mm, and the scale bars in (D–F) represent 1mm.
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beamnormally incident on the flat surface. This resulted in
strong back-reflections, saturation, and poor image qual-
ity. Images were also excluded if the tissue/surface was too
far away from the beam focus near the center of the image,
which would result in poor image quality often with low
SNR. There were two specimen sites where only seven or
eight high-quality images were selected, but all images
were at least 500mm apart. An algorithm was then
generated to process the selected OCT images (Fig. 1).
Within the OCT images, variations in signal intensity
suggest underlying scattering structures and features, and
time-dependent signal intensity fluctuations were largely
driven by Brownian motion or tissue settling.
First, the foreground (tissue) was segmented from the

background via manual segmentation. A binary image,
identified in this paper as a polygonal mask, was
interactively generated by selecting less than ten user
defined initial contour positions that were around the
periphery of the tissue region. Once the points were
selected, 300 iterations of contour evolutionwith theChan-
Vese method [20] would then define the segmented region,
against a uniformly black background. Then, within the
segmented tissue regions, three statistical parameters
were calculated: CV, STD, and Range. CV is a measure of
the spread of the data (pixel intensity) that describes
variability relative to themean (STD divided by themean),
andwas chosen because it can compare the spread of image
regions that have differentmeans. For example, sarcoma is
known to have a dense, relatively homogeneous, yet
randomly organized structure. Therefore, STS CV values
were expected to be lower than muscle CV values since
muscle is more linearly structured and does not appear as
homogeneous as sarcoma tissue. The STD measures the
degree of pixel intensity variability, and was chosen as a
variable to visualize the distribution or spread of the
intensity data about themeanvalue. TheRange parameter
corresponds to the minimum-to-maximum range of
the data in the window, and is another estimate of
distribution of intensity values in each B-scan. This

Fig. 3. Box plots of the means of Standard Deviation comparing
(top) all the adipose and sarcoma B-scans, and (bottom) all the
adipose and muscle B-scans.

Fig. 4. OCTand corresponding histopathology froman excised specimen from the dorsal thorax of a
domestic long hair cat. Specimen dimensions were 9.5 cm x 6.5 cm x 5 cm. Three OCT images and
corresponding histology are shown for the three inked areas on the specimen. (A) Sarcoma,
(B) muscle, (C) muscle (m), and adipose (a). The scale bars for the OCT images represent 1mm and
the scale bars for the histology represent 10mm.
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minimum-to-maximum range is a sub-range of the full
dynamic range of the data throughout the entire image,
and is an indicator of the full distribution of local intensity
values. Outlying intensity values (OCT images suffer from
outliers if the pre-processing tissue/background segmen-
tationwas not performed) usually have an undue influence
on this statistic, which makes the range a less reliable
estimator. Therefore, it was expected that this metric
would probably be the least robust of the three.
A sliding window of 11� 11 pixels, which corresponded

to 91.3�85.8mm2, was used to calculate the aforemen-
tioned metrics over each OCT image, and was found
suitable for differentiating tissue types in this study. This
window size was selected based on trade-offs. The larger
the window, the longer the processing time. Also, a larger
windowwould average out fine variationswithin the image
data, while too small of a window would tend to increase
contributions from sub-structural fluctuations in the data.
Adipocytes, myofibers, fibroblasts, and neoplastic cells
vary in their size, as do any bundles or larger structural
groups they may form. From the literature, and as seen
histologically in our tissue sections, an adipocyte is
approximately 10mm in diameter, myocytes range from
10 to 100mm in diameter, and a soft-tissue sarcoma tumor
cell has a diameter of�10mm [21]. A typical dimension of a
skeletal muscle fiber is 100mm, while a myofibril is
�200mm [22]. The dimensions of our sliding window fall
roughly in the middle of the dimensional scale range we
wish to interrogate, roughly between the size of individual
cells, and the size of the larger ordered structures such as
the fibers. Using this window size, the statistical metrics
(means of CV, STD, and Range) were determined in less
than 1 minute using a standard multi-core desktop PC.
A robust non-parametric statistical test for independent

samples (Wilcoxon test) was then used to test whether or
not the different tissue types were statistically different.
The Wilcoxon test was chosen because it does not assume
that the data follows a specific distribution.

RESULTS

The three primary tissue types present in the tissue
samples were sarcoma, muscle, and adipose tissue, which
are shown both microscopically on histology and indicated
in corresponding OCT images (Fig. 2). Adipose tissue was
expectedly found to have a characteristic honeycomb
structure which exhibited relatively lower scattering,

Fig. 5. Image processing sequence for the descriptive Coefficient of Variation (CV) statistical
metric. (A) OriginalOCT image of sarcoma, (B) correspondingmask, and (C) calculatedCV. (D) Raw
OCT image of muscle, (E) corresponding mask, and (F) calculated CV. Scale bar represents 1mm
and the color bar ranges from 0.1 to 1.1 in steps of 0.1.

Fig. 6. Box plot of the means of Coefficient of Variation for all
muscle and sarcoma B-scans.
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and had a distinctive hole-filled appearance and texture
pattern on OCT. The refractive index of adipose tissue has
been previously reported to be 1.333� 0.024 (mean�
standard deviation), which is different from that ofmuscle,
which was found to be 1.399� 0.013 [23].

Even though adipose tissue can be readily identified and
discriminated against sarcoma and muscle, both visually
and with OCT, it was still analyzed with these metrics
againstmuscle and then against sarcoma. Figure 3 shows a
representative set of box plots for comparing the STD
between adipose and sarcoma, and between adipose and
muscle. Using the Wilcoxon test, adipose tissue was
determined to be statistically different (P� 0.0000001)
from both muscle and sarcoma.

In contrast to adipose tissue, muscle and sarcoma tissue
are both dense and highly scattering; thus, more challeng-
ing to differentiate with OCT. A photograph of a
representative tissue specimen resected during surgery
is shown in Figure 4, along with the representative
corresponding OCT images and histology. This specimen
contains marked regions of the three tissue types encoun-
tered in this study: sarcoma, muscle, and adipose tissue.
Sarcoma tissue is highly cellular (there is a larger quantity
of smaller cells present in a given area (Fig. 4A)) and
sarcoma is structurally disorganized due to the irregular
growth patterns that are typical of most cancers. In
contrast, muscle tissue has a more distinct and defined
cellular content (with fewer but larger cells) with aligned
structural organization (Fig. 4B).

Figure 5 illustrates the image processing steps for the
CV metric, with a direct comparison between sarcoma and
muscle tissue. The original intensity image (OCT image) of
sarcoma tissue is shown with its corresponding mask,
followed by the result of multiplying the CV with the mask
(Fig. 5A–C). The same CV metric was calculated on an
original OCT intensity image of muscle tissue and
similarly processed (Fig. 5D–F). B-scans were grouped
based on tissue types. The CV, STD, and Range were

calculated over all of the segmented B-scans in every
group, then the mean of each statistical parameter was
calculated, and the Wilcoxon Rank Sum Test was applied
to compare the means of each statistical parameter. The
Wilcoxon rank sum test tested the null hypothesis that the
data from the two groups have equal means, against the
alternative that they are not equal. Finally, a box plot was
generated to visualize the results (Fig. 6). The means for
the STD and Range metrics can be visualized in the box
plots shown in Figures 7 and 8, respectively.
The CVmetric illustrated in Figure 5 demonstrates that

with our image processing algorithmand display, there is a
visually perceptible difference between sarcoma and
muscle. The sarcoma image in Figure 5C reveals lower
CV values (toward purple on the color scale). In contrast,
the muscle image in Figure 5F reveals higher CV values
(toward orange and white). The two-sided Wilcoxon Rank
Sum Test (set to the 5% significance level) tested the null
hypothesis that the means of the CV for muscle and
sarcoma in OCT images are equal, against the alternative
that they are different. For all three metrics, the test
rejected the null hypothesis, indicating that indeed there
were statistically significant differences between sarcoma
andmuscle in theOCT images. For theCVmetric,P-values
were�0.001, and for STD andRange values,P values were
�0.0001.

DISCUSSION

To summarize these results, there were statistically
significant differences between the means of the CV, STD,
and Rangemetrics for OCT images of sarcoma andmuscle,
and clearly for adipose tissue. While these three metrics
are somewhat related, it is validating that all three showed
significant differences, and demonstrated their use as
discriminating metrics between these two highly scatter-
ing tissue types (sarcoma and muscle). In the OCT
images, sarcoma tissue appeared to be more homogenous
and texturally smooth. In contrast, muscle tissue had

Fig. 7. Box plot of the means of Standard Deviation for all muscle
and sarcoma B-scans.

Fig. 8. Box plot of the means of Range for all muscle and sarcoma
B-scans.
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image-based structure that was somewhat disruptive and
less texturally smooth or homogeneous. In terms of signal
intensity, both tissues are highly scattering, with sarcoma
having a higher cellular density and a more random
homogeneous pattern compared to muscle, which exhib-
ited a more aligned, anisotropic structure with higher
angles of potential light scatterers.
The sarcoma group showed a lower CV but a higher STD

metric. We interpret that the lower CV values are likely
due to a higher intensity mean, which is a differentiating
factor between tissue types. The lowerCVmetric could also
be due to the more uniform or homogeneous texture or
structure of sarcoma tumor tissue at these resolutions/
scales, compared to the larger honeycomb-like adipose
tissue or more linear structural features in the muscle
tissue. It should be noted that the Range metric for
sarcoma is also greater than for muscle, which parallels
that of the STD metric. It appears that locally, within the
windowed regions, sarcoma is more homogeneous, but
when considering the Range and STD across the entire
image and between images of the same tissue type, there is
a greater variation of structures encountered, thereby
increasing the STD and Range. Furthermore, muscle
tissue, within a local windowed region, appears more
heterogeneous, but exhibits more uniform longer-range
order and similarities due to the muscle fibers and
structures. These differences, both the subtle visual
differences and the differences in cellular architecture,
were likely responsible for the statistically different
metrics investigated in this study. Ongoing studies are
investigating the use of polarization-sensitive OCT (PS-
OCT) to further differentiate these tissue types, just as we
have previously demonstrated for breast cancer [24], given
that muscle is birefringent and sarcoma tissue is likely
to be less so.
In this study, there were several sources of variability.

Since the statistical parameters/metrics were calculated
over the entire foreground image of tissue (instead of
smaller individual windows of local pixel neighborhoods),
the variability of intensity values is likely to be higher.
Visual inspection of sarcoma and muscle tissue in OCT
images suggests that there is a higher variability of signal
intensity and coarser texture in muscle tissue compared to
sarcoma. However, images inherently contain amixture of
multiple tissue types (including tissue types other than
adipose, sarcoma, and muscle) as well as a wide range of
microscopic cellular and structural orientations (notably
muscle fibers), as these tissue specimens come from
different areas of the body, and are imaged at varying
orientations. These architectural variations likely also
increase the inherent variability of the OCT signal
intensity and texture patterns. In this study, samples
were not aligned specifically along any inherent direction
of the tissue fibers, so sample rotation invariance should be
considered in future imaging sessions and analysis,
particularly for the use of PS-OCT. Nevertheless, statisti-
cally, the adipose, muscle, and sarcoma tissues evaluated
in this study were found to be significantly different.

CONCLUSION

Due to the inherent cellular microstructural and
organizational differences, texture analysis of scattering
signal intensity in OCT images has been shown to be
appropriate for differentiating sarcoma, muscle, and
adipose tissue. The mean values of CV, STD, and Range
showed that these tissues are indeed significantly different
under OCT. This study was developed with the future goal
of improving intraoperative differentiation of these tissue
types. While the surgical resection of the sarcoma includes
a supposedly clear margin, there are significant risks that
the tissue left behind in the patient still contains residual
tumor, or tumor cells, particularly for delicate surgical
procedures near sensitive tissue structures. Frozen-
‘section histology is often used to assess margins, but at
the expense of undersampling the large margin area, and
delaying the surgical procedure for tens of minutes until
the pathologist has a result. Therefore, an intraoperative
imaging tool such as OCT that is able to identify tissue
structure and differentiate tissue types in real time has the
potential to reduce surgery costs as well as reduce or
eliminate the high local recurrence rates of sarcomas in
humans and companion animals. Similar approaches
should be investigated in other sub-types of sarcoma,
and these methods may also extend into other solid-tumor
surgeries where rapid intraoperative margin assessment
is critical.

Future implementation of this algorithm and method
will focus on ways to automatically differentiate tissue
types in real time displays for immediate feedback during
the surgical procedure, and with samples that have a
diverse mixture of poorly defined tissue types.
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