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In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture
microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier
domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted
parameter search problems. We further present the results of this algorithm applied to phantom and biological
tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM
reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the non-
expert using ISAM imaging is also significantly lowered. © 2016 Optical Society of America

OCIS codes: (110.4500) Optical coherence tomography; (100.3175) Interferometric imaging; (110.1758) Computational imaging;

(100.0100) Image processing.
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1. INTRODUCTION

Interferometric synthetic aperture microscopy (ISAM) [1–4] is
an imaging modality that applies the solution to the inverse
problem to data sets collected from optical coherence tomog-
raphy (OCT) [5–7] to achieve focal-plane transverse resolution
throughout the image. ISAM has been validated with histologi-
cal sections [2] and demonstrated in real time [3,4].

In OCT, nonidealities, such as an imbalance of dispersion
between the sample arm and the reference arm and the aberra-
tion caused by the objective lenses and the sample itself, cause a
degradation in the resolution in the axial and transverse direc-
tions. Methods such as dispersion correction [8,9] and compu-
tational adaptive optics (CAO) [10,11] have been developed to
address these issues. These procedures have been incorporated
by the ISAM community into standard operating procedures
for data processing and image reconstruction. However, to per-
form such an ISAM image reconstruction, manual selection
and tuning of parameters such as the second- and third-order
dispersion correction parameters, the focal plane depth, and the
various weightings of each mode of dispersion correction are
needed. This parameter tuning process is labor intensive,
and optimal results cannot be guaranteed. In this paper, we

present the theory and experimental results of a metrics-assisted
parameter search method that enables automation of the whole
process and achieves robust and near-optimal ISAM recon-
structions. These results save numerous hours of labor and
lower the technical barriers to ISAM imaging.

2. METRICS-ASSISTED ISAM

A. Background
A typical OCT data set S̃OCT�rk; k0� consists of an array of
interference spectra measured at thousands of linearly spaced
wavenumbers, k0, for each transverse scanning position rk.
It is related to the spatial OCT reconstruction SOCT�rk; z�
via a Fourier transform in the k0 dimension and related to
the plane-wave decomposition ˜̃SOCT�kk; z� via a two-dimen-
sional Fourier transform in the rk dimensions. In the following
subsections, in order to improve the readability of the equa-
tions, data sets with the same subscript are, by default,
equivalent under a Fourier transform of the corresponding
dimensions, e.g.,

S̃OCT�r∥; k0� �
Z

dzSOCT�r∥; z�e−ik0z (1)

and
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SISAM�r∥; z� �
ZZ

dk0d2k∥
˜̃SISAM�k∥; k0�eik∥·r∥�ik0z : (2)

B. Spatial and Frequency Domain Metrics
In an ISAM imaging system, the reconstruction algorithm can
be divided into three stages: dispersion correction, Fourier re-
sampling, and computational adaptive optics correction. Each
stage requires some system parameters to be passed into the
algorithm. Any deviation from the optimal value of the param-
eters will result in blurring effects or other artifacts in the image.
To automate the process, we treat each stage as a parameter-
search problem. We utilize image quality metrics to assign
scores at each stage to measure the sharpness in corresponding
dimensions for any possible combinations of parameters in the
parameter space, so that each parameter-search problem is con-
verted into an optimization problem. The process is described
by the flowchart in Fig. 1. The sharpness metrics can be
selected from or be a weighted combination of the metrics
introduced below.

In this paper, we introduce and compare multiple metrics,
which can be categorized into two classes, spatial-domain
metrics and frequency-domain metrics.

For spatial-domain metrics, we focus on metrics that take
the p-norm of the image amplitude,

MNI�Sα1 ;…;αn� �
�ZZ

drkdz
��Sα1 ;…;αn�rk; z�

��p�1
p
; (3)

where Sα1;…;αn�rk; z� represents the spatial image generated at
some stage with parameter set �α1;…; αn�, and p can take on
a variety of values.

In the special case of p � ∞, it becomes the maximum-
intensity metric, which takes the maximum intensity of the
image,

MMI�Sα1 ;…;αn� � max jSα1 ;…;αn�rk; z�j: (4)

The maximum-intensity metric is based on the intuition that,
when appropriate parameters are passed in at each stage, the
phase and/or directions of the plane waves become well aligned,
thus creating strong constructive interference [10], resulting in
high-intensity voxels and sharp images. An alternative metric
with a similar intuition behind it is the image-power metric,
where p � 2 [12].

In the special case of p � 0, with the addition of a thresh-
olding process, it becomes the sparsity metric, which counts the
number of voxels with an intensity higher than the noise level,

M SP�Sα1 ;…;αn� �
X
�rk ;z�

Th�jSα1 ;…;αn�rk; z�j; μ0�; (5)

where Th�·; μ0� is the thresholding function with a cutoff μ0.
The cutoff is set slightly higher than the noise floor of the image
so that the metric can reflect the number of voxels occupied by
the sparse content of the sample. The metric should reach
a minimum when all blurring effects are corrected for.

When 1 ≤ p < ∞, the characteristics of the p-norm metrics
transit smoothly between the two extremes.

The other class of metrics are the frequency-domain metrics.
Based on the hypothesis that better images contain more high-
spatial-frequency components than a blurry version of the same
image, we may make use of a metric that measures high-spatial-
frequency components in certain dimensions of the image. This
metric takes on different forms depending on which dimen-
sions are of concern. Below shows an example that focuses
on the axial (z-directional) high-spatial-frequency components,

MHF�Sα1 ;…;αn�

�
�ZZ

drkdkzw�kz�
����
Z

dzeikz z
���Sα1 ;…;αn�r∥; z�

���
����
p
�1

p
; (6)

where a weighted p-norm of the spatial frequency components
in the z direction is calculated, with a weighting, w�kz�, that
places emphasis on high axial spatial frequencies.

From our observations, each metric has its own pros and
cons, which will be discussed in detail in Section 5.

C. Dispersion Correction
As the OCT setup inevitably contains some amount of imbal-
ance in the dispersion between the sample arm and the refer-
ence arm, each wavelength component in the optical spectrum
sees a small amount of change in the refractive index in the
system. This effect causes a slowly varying phase shift ϕ�k0�
in the data set S̃�r∥; k0� along the wavenumber direction,

Fig. 1. General description of the optimization process at each
stage.
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S̃�r∥; k0� � S̃ ideal�r∥; k0�eiϕ�k0�; (7)

where k0 denotes the wavenumber coordinate, and
S̃ ideal�x; y; k0� refers to the ideal OCT data set that contains
no dispersion mismatch. Equivalently in the spatial domain,
this effect causes a convolution in the z direction, resulting
in a lowered axial resolution,

S�r∥; z� �
Z

dz 0S ideal�r∥; z − z 0�hspread�z 0�; (8)

which is a convolution in z with the spreading function
hspread�z� �

R
eik0z�iϕ�k0�dk0.

To correct this dispersion, one needs to determine the
parameters that cancel out the second-order (group velocity
dispersion) and the third-order components [9],

Sα2 ;α3�rk; k0� � S�rk; k0�eiα2�k0−kc�2�iα3�k0−kc�3 ; (9)

where kc is the point around which the Taylor series expansion is
performed, usually the center point of the wavenumber space k0.
This is a time-consuming process and requires considerable
experience. Although it is possible to measure and store the
dispersion-correctionparameters of theOCTsetup in the system,
they may change as a result of displacement of the optical ele-
ments, stress on the optical fiber, or whether there is a cover glass
on top of the sample. Thus, OCT systems with stored dispersion
correction parameters still require frequent calibration.

In this stage, we adopt the method from [9] into our frame-
work and extend it to work with multiple classes of metrics and
optimization methods for different classes of images. The goal is
to find the optimal combination of parameters �β2; β3� so that
the dispersion correction produces the sharpest results in the
axial (z) direction. The optimization problem is formulated as

�α2; α3� � arg max
α2 ;α3

M�Sα2 ;α3�; (10)

whereM �� can be any one or a linear combination of the afore-
mentioned sharpness metrics. The optimization methods will
be discussed in detail in Section 3.

For volumetric data sets from high-resolution, transversely
oversampled, large-field-of-view OCT systems, the amount of
data could cause the parameter search to converge slowly. To
address this issue, we propose down-sampling along the trans-
verse dimensions prior to the parameter search. Since, in this
stage, the sharpness in the axial direction is the main concern,
down-sampling in the transverse dimensions has very little
effect on the accuracy of the parameter search. After the param-
eter search is finished, the estimated parameters can then be
applied to the full data set for dispersion correction.

D. Fourier Resampling
The most important step of ISAM is the Fourier-domain re-
sampling, which brings the whole image into focus,

˜̃SISAM;zf �kk; β� � e−ik0zf ˜̃SOCT�kk; k0�jk0�1
2

ffiffiffiffiffiffiffiffiffiffi
k2k�β2

p : (11)

In this step, the depth of the focal plane zf is needed as
a parameter.

Optimization over a large range of zf can be computationally
expensive. So, before performing the optimization step, we
propose estimating the focal plane depth first according to a

sharpness–brightness score, Q�z�, at each depth, produced by
the transverse sharpness metrics, e.g., the high-spatial-frequency
metrics,

Q�z��MFR
HF1�SOCT�

�
�Z

d2k∥

����w�k∥�
Z

d2r∥eik∥·r∥
���SOCT�r∥;z�

���
����
p
�1

p
; (12)

where, again, w�k∥� is a weighting that places emphasis on high
transverse spatial frequencies. Here, we utilize the fact that the
OCT image at the focal plane is sharper and brighter than the
out-of-focus part, so the scoreQ�z� will peak near the focal plane
depth ẑf . With this estimate, the range of optimization can be
narrowed down to several Rayleigh ranges (zR) around the peak
of Q�z�. The optimization problem is then,

�zf � � arg max
zf ∈�ẑf −nzR;ẑf �nzR �

M�SISAM;zf �: (13)

It is worth mentioning that, during the ISAM resampling step,
where the data need to be circularly shifted vertically by zf pix-
els, instead of circularly shifting the matrix, the Fourier shift
theorem can be used to handle noninteger zf values, thus en-
abling finer granularity in this step. Similar to the previous step,
four types of metrics can be used. The high-transverse-spatial-
frequency metric should quantify the sharpness in transverse
(r∥) directions instead of the axial (z) direction,

MFR
HF2�SISAM;zf � �

ZZ
d2k∥dz

×
����w�k∥�

Z
d2r∥eik∥·r∥

���SISAM;zf �r∥; z�
���p
����
1
p
;

(14)

while the sparsity metrics, maximum-intensity metrics, and
image-power metrics do not need to be changed since they mea-
sure the sharpness in all dimensions.

E. Aberration Correction
The final stage is aberration correction using computational adap-
tive optics [10,13–15]. Because of the aberration of the lens, the
roughness of the sample surface, and the lens effect from refractive
index variations in tissue, the wavefront of each plane-wave com-
ponent of the scanning beam may become misaligned and thus
form an imperfect focal spot. As a result, the resulting ISAM
images may have an imperfect point-spread function. Common
optical aberrations that appear in the ISAM images include astig-
matism, coma, and third-order spherical aberration. OCT data
sets that contain aberration can be modeled [10] by

˜̃S�k∥; z0� � ˜̃S ideal�k∥; z0� exp
�X

n

iwnzn�k∥�
�
; (15)

where zn�k∥� are the Zernike polynomials corresponding to each
type of common aberration, labeled by number n, and wn de-
scribes the amount of the corresponding aberration. Note that
wn in general can be different for each depth z0. Such aberrations
cause blurring effects, such as spreading, tailing, and ringing in the
transverse direction.

To correct for optical aberrations in the ISAM images, it is
desirable to find out the proper weightings ŵn ≈ wn for each
depth z0 and to cancel out the multiplicative phase term,
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ˆ̃̃
S�k∥; z0� � ˜̃S�k∥; z0� exp

�
−
X
n
iŵnzn�k∥�

�
: (16)

Without automation, the method of achieving this is to man-
ually adjust each parameter ŵn until the image appears sharp by
the user’s observation. This again is a repetitious and time-
consuming process.

This process can be converted into the following optimiza-
tion problem [10]:

�w1;…; wn� � argmax
w1 ;…;wn

M
�
˜̃S�k∥; z0� exp

�
−
X
n

iwnzn�k∥�
��

:

(17)

The above-mentioned multidimensional optimization problem
can be very expensive to solve using current computational
power. So, based on the characteristics of each type of aberra-
tion, we categorize them into several semi-independent groups,
as can be seen in Table 1 [16], where �ρk; θk� is the polar form
of the �kx; ky� coordinates.

The optimization problem can then be divided into multi-
ple steps with fewer dimensions within each stage. The first
step is

�ŵ1;…; ŵ3� � argmax
w1 ;…;w3

M
�
˜̃S0�k∥; z0� exp

�
−
X3
n�1

iwnzn�k∥�
��

:

(18)

The data set is then updated using the estimation ŵ1;…; ŵ3

from this stage,

˜̃S1�k∥; z0� � ˜̃S0�k∥; z0� exp
�
−
X3
n�1

iŵnzn�k∥�
�
: (19)

The second step estimates ŵ4 and ŵ5 based on ˜̃S1�k∥; z0� and
then updates the data set again using ŵ4 and ŵ5 to produce
˜̃S2�k∥; z0�. Similarly, the third step estimates ŵ6 and ŵ7 based

on ˜̃S2�k∥; z0� and then updates the data set again using ŵ6 and

ŵ7 to produce the final results ˜̃S3�k∥; z0�.
Since this step is performed plane by plane, all four metrics

should be modified for proper dimensionality, i.e., for each
plane z � z0,

MAC
MI�S�z0�α1 ;…;αn� � max jSα1 ;…;αn�rk; z0�j; (20)

MAC
IP �S�z0�α1 ;…;αn� �

�Z Z
drkjSα1 ;…;αn�rk; z0�j2

�1
2

; (21)

M SP�Sα1 ;…;αn� �
X
�rk ;z�

Th�jSα1 ;…;αn�rk; z0�j; μ0�; (22)

and

MAC
HF�S�z0�α1 ;…;αn�

�
�Z

dkkw�k∥�
����
Z

dr∥eik∥·r∥ jSα1;…;αn�r∥; z0�j
����
p
�1

p
: (23)

3. MULTIDIMENSIONAL OPTIMIZATION

The previous section has established three optimization prob-
lems for the three stages of automated ISAM processing. For
each of them, a variety of methods can be chosen to find
the maximum or the minimum point, depending on the speed
and accuracy requirements of the system.

The simplest and most robust of all the methods is the
exhaustive grid search. An optimization problem with k param-
eters to determine,

�α1;…; αk � � arg max
α1 ;…;αk

M �Sα1 ;…;αk �; (24)

can be implemented by k nested for loops in nonvectorized
languages such as C/C++, Python, and Java to calculate the
scores M�Sα1 ;…;αk � for each of the possible combinations of
α1;…; αk within a certain boundary. The parameter combina-
tion corresponding to the maximum score is the optimal
parameter set for this optimization problem. With an appropri-
ate boundary set for each parameter, this method is guaranteed
to find the global maximum (or minimum). But, on the other
hand, this method is relatively slow and scales badly as the
number of parameters k increase (O�nk�).

Another method that can be used is the gradient descent (or
ascent) algorithm. The algorithm starts with a set of initial
values, e.g., 0, 2

64
α�0�1

..

.

α�0�k

3
75 �

2
4 0
..
.

0

3
5; (25)

and iteratively updates them toward the local minimum (or
maximum) along its local gradient,

Table 1. Common Types of Aberration in OCT

Group Label Aberrations Zernike Polynomials

I 1 Astigmatism z−22 � ffiffiffi
6

p
ρ2k sin 2θk

2 Astigmatism z22 �
ffiffiffi
6

p
ρ2k cos 2θk

3 Defocus z02 �
ffiffiffi
3

p �2ρ2k − 1�
II 4 Coma z−13 � ffiffiffi

8
p �3ρ3k − ρk� sin θk

5 Coma z13 �
ffiffiffi
8

p �3ρ3k − ρk� cos θk
III 6 Spherical z04 �

ffiffiffi
5

p �6ρ4k − 6ρ2k � 1�
7 Defocus z02 �

ffiffiffi
3

p �2ρ2k − 1�
Fig. 2. Schematic of the spectral domain OCT system used for col-
lecting the data sets.
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2
64
α�n�1�
1

..

.

α�n�1�
k

3
75 �

2
64
α�n�1

..

.

α�n�k

3
75 − μ∇M �Sα1;…;αk �; (26)

where α�n�k denotes the value of the kth parameter at the nth
iteration, μ is a parameter that controls the rate of change, and

the operator ∇ takes the gradient of M�Sα1 ;…;αk � along
α1;…; αk dimensions. A smaller μ generally leads to a higher
probability of convergence and a slower rate of convergence,
and vice versa. In discrete arithmetic, the updating formula
for each parameter α�n�m can be implemented as

α�n�1�
m � α�n�m � μ

2δ
�M �Sα�n�1 ;…;α�n�m �δ;…;α�n�k

�
−M�Sα�n�1 ;…;α�n�m −δ;…;α�n�k

��; (27)

where δ is the step size for the finite difference. When the
parameters, as well as the value of the objective function change
little (depending on the precision requirement, e.g., less than
1%) in the few most recent iterations, convergence is reached,
and the iteration process can be stopped. Gradient descent
requires the objective function to be smooth and convex,
otherwise it is possible that the parameters will converge at
some local minimum (or maximum) instead of the global
one. Converging at a local minimum will result in suboptimal
reconstruction quality and may further affect the accuracy in
the subsequent stages. Gradient descent is, in general, faster
than grid search and scales linearly as the number of parame-
ters, k, increases.

The above are just two simple examples of optimization
techniques that can be used in solving this problem. More ad-
vanced techniques, such as simulated annealing, can be used to
achieve higher robustness or speed. Cascaded procedures, such
as a grid search on a coarse-grained grid followed by a gradient
descent near each local maximum, may also help improve the
robustness and speed.

4. IMPLEMENTATION AND RESULTS

The algorithm was implemented in MATLAB using a worksta-
tion equipped with an Intel Xeon E3-1225v3 3.2 GHz

Fig. 3. (a) Volumetric plot of the raw OCT image in spatial domain
before dispersion correction; (b) and (c) OCT image after 10 and 20
iterations of automated dispersion correction; (d) Manually tuned
dispersion corrected data set.

Fig. 4. Sharpness–brightness score of the sample for each depth; the
inset plots the sharpness metric output for the finer focal plane depth
search process.
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Quad-core CPU. OCT data sets of a subresolution phantom
(TiO2 particles) and human palm skin tissue were taken from
the spectral domain OCT setup shown in Fig. 2. The system
uses a superluminescent diode (SLD) light source centered at
860 nm, with a bandwidth of approximately 80 nm. The light
is focused by a 0.6 NA objective lens forming a theoretical focal
spot radius of 0.46 μm and a theoretical Rayleigh length of
0.8 μm in air, computed from the numerical aperture of the lens.

A. Results on Particle Phantom
The algorithm was first validated using the particle phantom
data set. The data set was first normalized according to the
power spectrum and interpolated onto linear wavenumber
grids. Then, an automated dispersion correction was performed
on the data set using the gradient descent method. The effect at
the start and at various iterations are shown in Figs. 3(a)–3(c),
and the manual tuning result is shown in Fig. 3(d). The auto-
mated optimization procedure takes only 12 iterations to re-
duce the dispersion to a level comparable to manual tuning.
The algorithm finally reached the optimum state at around iter-
ation 20, where the vertical resolution reached its optimum.

After the automated dispersion correction, the algorithm es-
timates the focal depth using the sharpness–brightness score
computed for each depth. Note that any possible bright reflec-
tor, such as the cover slip on top of the sample, is removed from
the data. The sharpness–brightness score for this data set is
plotted in Fig. 4 and peaks at a depth of 261.6 μm.

Following the focal plane estimation is the fine grain opti-
mization step, where the algorithm tries various focal plane
depths within several Rayleigh lengths around the estimated
depth. The results are shown in the inset of Fig. 4. For this
data set, the optimum focal plane depth is 262.8 μm. With
this optimum focal plane depth, the algorithm performs ISAM
resampling.

Finally, after ISAM resampling, the algorithm performs the
automated computational adaptive optics for aberration correc-
tion. For each depth, the algorithm performs the three stages of
aberration correction described in Section 2.C. Figure 5 shows
a comparison of the raw OCT image, the image after auto-
mated ISAM resampling, and the image after automated com-
putational adaptive optics in 3D volumetric rendering. Two
en face planes far from the focal plane are displayed for each

Fig. 5. Panels (a)–(d) show an en face plane 120 μm above the focal plane during each stage of processing. Panels (e)–(h) show a volumetric
rendering of the 3D particle phantom data set during each stage of processing. Panels (i)–(l) show an en face plane 101 μm below the focal plane
during each stage of processing.
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stage. It can be observed that the automated ISAM resampling
significantly extends the depth of field, therefore many particle
scatterers far from the focus show up clearly. Away from the
focal plane, the signal-to-noise ratio (SNR) decreases linearly
with distance [17], and the noise gradually shows up as the
clouds at the top and bottom parts of the volumetric rendering.
If a series of en face planes farther away from the focal plane
were depicted, the point scatterers in the image would gradually
be submerged under the rising noise floor. At this stage, the
depth of imaging is no longer bounded by the depth of field
of the imaging system. Instead, it is bounded by the decaying
SNR. With the help of the automated aberration correction,
the usable depth of imaging extends farther, and sharp and
clean information is extracted from regions that were originally
submerged in noise.

B. Results on Human Palm Tissue
The algorithm was then tested on a data set taken using in vivo
human palm skin tissue (also used in [18]). Since this data set
came with matched dispersion, the automated dispersion cor-
rection selected α2 � α3 � 0 as the dispersion correction
parameters. The algorithm then estimated and optimized the
focal plane depth and selected 192.3 μm. With this parameter,

ISAM was performed on the data set. Automated CAO was
then performed on the data set layer by layer. Figure 6 shows
a matrix of en face images from the raw OCT data, auto-
mated ISAM results, and the automated CAO results for
the various layers reported in [18]. Figures 6(a)–6(c) show
the epidermis layer 171 Rayleigh lengths away from the focal
plane, with the nuclei of a granular cell labeled with the arrow.
Figures 6(e)–6(g) show the superficial dermis layer 67 Rayleigh
lengths away from the focal plane, with a dermal papillae
labeled with the arrow. Figures 6(i)–6(k) show the structure
deep in the dermis 90 Rayleigh lengths away from the focal
plane, with probable collagen fiber bundles labeled with the
arrow. Figures 6(d), 6(h), and 6(i) are the manually processed
images of the same data set at similar depths, reproduced
with authorization from the authors of [18]. Note that
because of some difference in the method of data processing,
the images produced by the automated algorithm and by
manual tuning may not correspond to the exact same slice.
However, the difference should be minimal. Compared to
the manually fine-tuned images, it can be seen that the auto-
mated algorithm is able to achieve a similar performance as an
experienced researcher on a highly complicated biological
sample.

Fig. 6. (a)–(c) En face plane 76 μm above the focal plane at each stage. (e)–(g) En face plane 30 μm above the focal plane at each stage.
(i)–(k) En face plane 40 μm below the focal plane at each stage. (d), (h), and (i) are the reproduced manually processed results of the same data
set at similar depths, previously published in [18].
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5. DISCUSSION AND CONCLUSION

The algorithm described in this paper is a general framework
for the automation of ISAM data processing. Many modifica-
tions can be made when implementing it for certain applica-
tions. For example, for systems with relatively slowly varying
dispersion, the optimization process for dispersion correction
(e.g., gradient descent) can start from the optimum value of
the previous data set, instead of zero, which should take much
fewer iterations to converge. This algorithm, with slight
modification, can also be used for multifocal interferometric
synthetic aperture microscopy (MISAM) [17] and polariza-
tion-sensitive interferometric synthetic aperture microscopy
(PS-ISAM) [19].

From our observations, the performance of each type of
metric varies with the types of samples that are being processed.
We summarize our observations in Table 2. The runtime in
MATLAB for each data set is 20–30 min. If implemented with
a highly parallel processing unit, for instance, a GPU [4], using
programming languages such as CUDA, we estimate the runtime
to be within 2–3 min, according to the speed-up seen in similar
applications. If performed manually, we estimate the workload
for each data set to be 8–16 h for an experienced person.

In this paper, we have presented an algorithm framework
that automates the processing of dispersion correction, ISAM
resampling, and computational adaptive optics to achieve near-
optimal reconstruction. We tested the algorithm on a particle
phantom data set and an in vivo human palm skin tissue data
set and achieved results comparable to images manually ad-
justed by an experienced researcher. This algorithm signifi-
cantly lowers the technical barrier for a nonexpert to utilize
ISAM imaging technology and saves hours of processing time
for each ISAM data set.
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