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Numerical correction of optical aberrations provides an
inexpensive and simpler alternative to the traditionally
used hardware-based adaptive optics techniques. In this
Letter, we present an automated computational aberration
correction method for broadband interferometric imaging
techniques. In the proposed method, the process of aberra-
tion correction is modeled as a filtering operation on the
aberrant image using a phase filter in the Fourier domain.
The phase filter is expressed as a linear combination of
Zernike polynomials with unknown coefficients, which
are estimated through an iterative optimization scheme
based on maximizing an image sharpness metric. The
method is validated on both simulated data and experimen-
tal data obtained from a tissue phantom, an ex vivo tissue
sample, and an in vivo photoreceptor layer of the human
retina. © 2016 Optical Society of America

OCIS codes: (110.4500) Optical coherence tomography; (110.3175)

Interferometric imaging; (110.1758) Computational imaging;

(110.1080) Active or adaptive optics.
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Aberrations in an optical system cause a reduction in imaging
resolution and poor image contrast, and limit the imaging
depth while imaging biological samples. Traditional hard-
ware-based adaptive optics (HAO) methods provide a means
for correcting these aberrations by physically sensing and modi-
fying the wavefront by using a wavefront sensor and deformable
mirror, respectively [1]. HAO methods have complex optical
setups and require expensive components. In interforometry-
based imaging techniques such as digital holography micros-
copy (DHM) and optical coherence tomography (OCT)/
optical coherence microscopy (OCM), the measurement of a
complex optical field allows for computational correction of
aberrations by numerically modifying the phase of the detected
signal. Compared to HAO-based methods, computational
aberration correction offers the flexibility of correcting the

aberrations post-data-acquisition without the need for expen-
sive and complex hardware used in HAO.

A group of computational aberration correction techniques
is based on numerical sensing of the aberrated wavefront. In the
context of OCT/OCM imaging, the guide star-based numeri-
cal correction method proposed by Adie et al. [2] and the
subaperture correlation-based wavefront error sensing and cor-
rection method proposed by Kumar et al. [3] belong to this
category. The guide star method is particularly well-suited
for images that contain point-like structures. However, because
not all samples contain natural guide stars, the applicability of
this method can be limiting. The numerical subaperture cor-
relation technique is more general than the guide star method,
but the requirement of a uniform Fourier spectrum, and the
trade-off between cross-correlation accuracy (subaperture size)
and wavefront precision (subaperture number) makes the per-
formance of this method dependent on the scattering properties
of samples. Another group of techniques for computational
aberration correction is based on estimating an optimal com-
plex pupil phase profile for aberration correction.

Previously, our group has successfully demonstrated a
numerical aberration correction technique called computational
adaptive optics (CAO) for OCT imaging of various tissue phan-
toms and samples [4–6]. The CAO technique is based on maxi-
mizing an image sharpness metric to optimize the pupil phase
profile, which is modeled as a linear combination of Zernike
polynomials. In the existing implementation of our CAO tech-
nique, the optimization of the pupil function is performed by
manually changing the coefficients of the Zernike polynomials
while monitoring the trend of the sharpness metric. In this
Letter, we present an automated approach for performing
CAO, wherein the optimal Zernike polynomial coefficients
are obtained through an iterative optimization method.

The idea of correcting aberrations by maximizing a sharp-
ness metric has been, in the past, proposed and used for both
incoherent and coherent imaging systems [7,8]. In the HAO-
based OCT literature, the idea is used in sensorless AO systems,
where, most commonly, the coefficients of a subset of Zernike
basis functions are sequentially optimized in a predetermined
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order using a 1D grid search algorithm to alter the shape of the
deformable mirror so as to achieve maximum image sharpness
[9–11]. While this simple approach is fast and requires only a
few measurements, which is advantageous for in vivo imaging,
it does not necessarily guarantee an optimal solution. This is
because an optimum solution in one dimension of a multidi-
mensional space does not necessarily correspond to the
optimum value of the same dimension in the original multidi-
mensional space. Moreover, the choice of the order in which
the different Zernike modes are optimized seems unclear
[9,10,12,13]. To circumvent these problems, in our optimiza-
tion routine, instead of optimizing a predetermined Zernike
mode at a time, the number and type of Zernike modes at each
optimization step are chosen randomly. Starting from an initial
point, for different runs of the algorithm, the subsequent ran-
dom selection of the Zernike modes in our approach allows for
the exploration of different trajectories possibly leading to dif-
ferent optima in the multivariate search space. Additionally,
instead of using a 1D grid search algorithm for optimization,
we use the Resilient backpropagation (Rprop) algorithm,
which was originally proposed as an alternative to the gra-
dient-descent based backpropagation algorithm for training
the weights in a multilayer feedforward neural network [14].

To understand the optimization problem we seek to solve,
consider a complex valued aberrant image g�x; y� and the cor-
responding Fourier-domain representation G�u; v�. In OCT/
OCM, g�x; y� can be an en face complex image extracted from
the three-dimensional (3D) data after standard OCT process-
ing. The process of correcting aberrations can be viewed as
introducing a suitable phase correction term to ϕ�u; v� to
the aberrant image in the Fourier domain to obtain the cor-
rected image, as follows:

H �u; v� � G�u; v�e−jϕ�u;v�; (1)

such that sharpness of the corrected image, defined as

S �
X
x;y

�h�x; y�h��x; y��2; (2)

is maximized, where h�x; y� is related to H �u; v� by a Fourier
transform, i.e.,H �u; v� � F �h�x; y��. Expressing the phase cor-
rection term as a weighted sum of Zernike polynomials,
ψ k�u; v�,

ϕ�u; v� �
XK
k�1

ckψk�u; v�; (3)

the problem of obtaining the corrected image h�x; y� is then
equivalent to finding the optimal weights or coefficients, ĉ �
�ĉ1; ĉ2;…; ĉK �T for the Zernike modes that maximize the image
sharpness defined as in Eq. (2). Algorithm 1 outlines the main
steps of the procedure used to optimize the Zernike mode co-
efficients. At each iteration of the algorithm, a random number
of Zernike modes are selected (step 4 in Algorithm 1). The
coefficients for the selected Zernike modes are then optimized
by using the Rprop algorithm (step 5). After obtaining the
optimized coefficients, c̃opt, all the Zernike polynomial coeffi-
cients are updated (step 11) to reflect the cumulative correction
applied to the original aberrant image. Finally, the phase cor-
rection is applied to the aberrant image to obtain a corrected
image, which serves as the aberrant image in the next iteration
(step 12). Moreover, to explore multiple optima, the optimiza-
tion procedure was run five times and the solution yielding the

largest value of the sharpness metric was accepted as the final
solution.

Algorithm 1 Optimization of Zernike Coefficients

Input: Iabb ≡ g�x; y� ∈ RM×N;ZP ∈ RM×N×K

Output: Icorr ≡ h�x; y� ∈ RM×N; copt ≡ ĉ ∈ RK×1

1: Icorr ← Iabb

2: copt ← zeros�K; 1�
3: repeat
4: k ≡ logical�X1;X2;…;XK �:Xk ∼ Bernoulli�0.5�

∀ k ∈ f1; 2;…;Kg such that not all X k ∈ f0; 1g
5: c̃opt ← Rprop�Icorr;ZP�:; :;k��
6: ϕ ← zeros�M;N�
7: knonzero ← find�k�
8: for kindex � 1:length�c̃opt� do
9: ϕ ← ϕ� c̃opt�kindex� � ZP�:; :; knonzero�kindex��
10: end for
11: copt�knonzero� ← copt�knonzero� � c̃opt

12: Icorr ← F −1fF fIcorrg: � exp�−1i � ϕ � ZP�g
13: until converged

The choice of the Rprop algorithm used as the optimization
method in our study was primarily motivated by the simplicity
of the algorithm and the robustness of its performance to the
choice of the various parameters of the algorithm. Here, we
briefly outline the basic steps of the algorithm in the context
of our problem. More details regarding the implementation
and comparison of the Rprop algorithmwith other optimization
methods can be found elsewhere [14–16]. The algorithm starts
by setting the initial update values for all Zernike polynomial
weights to Δ0. This parameter determines the size of the first
weight step and was set to 0.01 in this study. The choice of this
parameter is rather uncritical because the weight steps are adap-
tively changed during the course of the optimization, as dis-
cussed next. The subsequent update value for each weight is
adaptively determined based on the change in the sign of the
partial derivative of the sharpness metric with respect to the cor-
responding weight. Every time the partial derivative of a weight
∇ck S

�t� changes sign, which indicates that the last update for that
weight was too large, and causing the algorithm to jump over a
maximum point, the update valueΔ�t�

k is decreased by a factor of
η−. If, however, the sign of the derivative is unchanged, then the
update value is incremented by a factor of η� to accelerate
the convergence process. Based on the recommendations of
the developers of Rprop, η� and η− were set to 0.5 and 1.2,
respectively. To avoid the weights from becoming too large
or too small, the update values are bounded by an empirically
determined upper limit Δmax and a lower limit Δmin:

Δ�t�
k �

8><
>:

max�η� � Δ�t−1�
k ;Δmax� if ∇ck S

�t−1� � ∇ck S
�t� > 0

min�η− � Δ�t−1�
k ;Δmin� if ∇ck S

�t−1� � ∇ck S
�t� < 0

Δ�t−1�
k otherwise:

(4)

The coefficient update value thus obtained can then be used to
obtain the new coefficient value based on the sign of the deriva-
tive as follows:

c�t�1�
k �

8><
>:

c�t�k � Δ�t�
k if ∇ck S

�t� > 0

c�t�k − Δ�t�
k if ∇ck S

�t� < 0

c�t�k otherwise:

(5)
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Finally, following the derivation in [17] an expression for the
partial derivative of the sharpness metric can be analytically
obtained as

∇ck S �
X
x;y

jhi�x; y�j2I
�X

u;v

H i�u; v�ωux
Mωvy

Nψ k�u; v�h�i �x; y�
�
;

(6)

where the subscript i denotes the intermediate value for each
iteration step, M , and N denotes the number of pixels in the
image along the lateral dimensions, ωM � e2πj∕M denotes a
primitive M th root of unity, and Ifzg denotes the imaginary
part of z.

The performance of the proposed algorithm was first vali-
dated on a simulated U.S. Air Force (USAF) resolution test tar-
get image. Amixture of Gaussian and speckle noise was added to
the original image to simulate a noisy image. Next, optical aber-
rations were introduced to the simulated noisy image by adding a
phase term to the nonaberrant image in Fourier domain. Similar
to previous works on sensorless AO [9,12,13], the phase term
was modeled as a weighted sum of Zernike polynomials corre-
sponding to the following six primary aberrations: defocus, as-
tigmatism (0°), astigmatism (45°), coma (0°), coma (45°), and
spherical aberration. To mimic a general optical aberration,
the weights of the Zernike polynomials were randomly chosen.
The aberrant noisy image thus generated is shown in Fig. 1(a),
which was used as the input to our aberration correction algo-
rithm. The image obtained after aberration correction is shown
in Fig. 1(b), which, when compared to the aberrant image, has
significantly better contrast and reduced aberrations.

After validating the performance of the proposed aberration
correction algorithm on a simulated image, the algorithm was
tested for OCT/OCM images of various samples. Figure 2(a)
shows an aberrant en face OCM image of a tissue mimicking
phantom consisting of copper zinc iron oxide nanoparticles
(<100 nm) in PDMS. The en face image corresponds to a
plane located 30.4 μm above the focus and extracted from
the 3D volumetric data set, which was acquired using a high
NA (NA � 0.6) Fourier-domain OCM system described else-
where [5]. The image shows significant blurring resulting from
the broadening of the point spread function (PSF) due to the
presence of the aberrations. A zoomed-in view of the area
enclosed by the blue dashed rectangle in Fig. 2(a) shows the
severity of the aberrations. After aberration correction, as
expected, the image SNR is improved and the subresolution
nanoparticles appear as point-like structures, as shown in

Fig. 2(b) and the corresponding zoomed-in view in Fig. 2(e).
A comparison of the zoomed-in views shows that the three
particles, which are indistinguishable in Fig. 2(c) due to the
presence of aberrations, can be clearly resolved in Fig. 2(e).
Additionally, as shown in Fig. 2(d), the PSF obtained after aber-
ration correction (orange curve) is significantly narrower than
the PSF obtained from the aberrant image (blue curve).
Specifically, after CAO processing, the full-width-at-half-
maximum (FWHM) of the PSF was estimated to be 0.8 μm,
which was the diffraction limit of the OCM system.

Next, the algorithm was tested on an OCM image acquired
from a scattering biological sample, which in our case was
ex vivo adipose tissue surrounding the aorta from an athero-
sclerotic rabbit. The OCM system used for imaging was the
same as was used for the tissue mimicking phantom. The aber-
rant en face OCM image corresponding to a plane at 37 μm
above the focal plane and the corrected image are shown in
Figs. 3(a) and 3(b), respectively. The corrected image clearly
has better contrast than the aberrant image, and the membrane
boundaries of the adipose tissue are also much better delineated
in the corrected image.

Finally, the proposed aberration correction algorithm was
used and tested on an en faceOCT image acquired in vivo from
the retinal photoreceptor layer in a human subject. The paraf-
oveal cone image was acquired using a high-speed en face OCT
system, details of which have been reported in an earlier publi-
cation [6]. Unlike the adipose tissue, the photoreceptor layer is a

Fig. 1. (a) Simulated USAF resolution test target image with intro-
duced aberrations. (b) Recovered image after automated aberration
correction.

Fig. 2. En face OCM images of sub-resolution particles in a tissue
mimicking phantom before (a) and after (b) CAO correction. (c) and
(e) are zoomed-in images of the regions enclosed by the blue dashed
squares in (a) and (b), respectively. The color bar scales indicate sig-
nificant improvement of the peak intensity of the signal after aberra-
tion correction. (d) PSF measurements for the particles indicated by
arrows in (a) and (b). The scale bar denotes 25 μm.
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strongly backscattering sample. Due to optical aberrations, the
individual cones are not recognizable in the raw en face OCT
image as shown in Fig. 4(a). After CAO correction, the cones
become clearly visible and well resolved throughout the entire
image as shown in Fig. 4(b). The enhancement in image reso-
lution is also supported by the improved intensity of the peak in
the plot of radially averaged power spectrum of the cone mosaic
indicated by the black arrow in Fig. 4(c), which corresponds to
the radius of Yellott’s ring and is an indicator of the improved
periodicity of the regularly arranged photoreceptors. Figure 4(c)
also shows that the amplitude of higher spatial frequency com-
ponents has been improved, which suggests finer structures over
the entire field-of-view in the corrected image are better resolved
than in the raw image before applying CAO.

In summary, we have proposed and demonstrated an auto-
mated method for computational aberration correction in
broadband interferometry techniques. The ability of the pro-
posed method to successfully correct aberrations was demon-
strated with OCT/OCM images of simulated, ex vivo, and
in vivo samples, having different scattering properties. The
number of iterations, the change in sharpness metric, and the
computational time of the proposed algorithm depend on a
multitude of factors, such as the nature of the structures present
in the image, the amount of aberrations, the number of Zernike
modes that are sought to be optimized, and the size of the image,
in addition to the stochasticity of our approach. In its current
implementation, the average time required for correcting six
primary aberrations in the USAF target image (image size:
512 × 512) on a Windows machine with an Intel i7 3.3 GHz
processor and 16 GB RAM was 20 s. Although the processing
time is not extremely crucial for our applications because CAO
processing is performed post-data-acquisition, it might never-
theless be advantageous, especially for clinical applications,
where rapid aberration correction might be a requirement dur-
ing imaging. In this regard, a graphic-processing-unit (GPU)
based implementation of the proposed method might be worth
exploring and will be pursued in future work.
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Fig. 3. En face images from rabbit adipose tissue: (a) before CAO
correction and (b) after CAO correction. The scale bar denotes 50 μm.

Fig. 4. Imaging of the living human photoreceptors in the para-
foveal region. (a) En face OCT of the cone mosaic before aberration
correction. (b) Cone mosaic after automated aberration correction.
The insets show zoomed-in views of the regions in white squares.
(c) Radially averaged power spectrum of (a) and (b). The peak indi-
cated by the black arrow corresponds to the radius of Yellott’s ring. The
scale bar represents 0.25°.

Letter Vol. 41, No. 14 / July 15 2016 / Optics Letters 3327

http://biophotonics.illinois.edu
http://biophotonics.illinois.edu
http://biophotonics.illinois.edu

	XML ID funding

