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ABSTRACT

The thickness of the human tympanic membrane
(TM) is known to vary considerably across different
regions of the TM. Quantitative determination of the
thickness distribution and mapping of the TM is of
significant importance in hearing research, particu-
larly in mathematical modeling of middle-ear dynam-
ics. Change in TM thickness is also associated with
several middle-ear pathologies. Determination of the
TM thickness distribution could therefore also enable
a more comprehensive diagnosis of various otologic
diseases. Despite its importance, very limited data on
human TM thickness distribution, obtained almost
exclusively from ex vivo samples, are available in the
literature. In this study, the thickness distribution for
the in vivo human TM is reported for the first time. A
hand-held imaging system, which combines a low
coherence interferometry (LCI) technique for single-
point thickness measurement, with video-otoscopy for
recording the image of the TM, was used to collect
the data used in this study. Data were acquired by
pointing the imaging probe over different regions of
the TM, while simultaneously recording the LCI and
concomitant TM surface video image data from an
average of 500 locations on the TM. TM thickness
distribution maps were obtained by mapping the LCI

imaging sites onto an anatomically accurate wide-field
image of the TM, which was generated by mosaicking
the sequence of multiple small field-of-view video-
otoscopy images. Descriptive statistics of the thickness
measurements obtained from the different regions of
the TM are presented, and the general thickness
distribution trends are discussed.

Keywords: tympanic membrane thickness, low
coherence interferometry, optical coherence
tomography, mosaic, image registration

INTRODUCTION

Despite there being a general agreement that the
thickness of the human tympanic membrane (TM)
varies considerably across different regions of the TM,
very limited data on the TM thickness distribution are
available in the literature, with all of it from ex vivo
specimens. TM thickness distribution is one of the key
parameters in mathematical modeling of middle-ear
dynamics. Such models play a fundamental role not
only in advancing our understanding of the hearing
process (Sun et al. 2002; Song and Lee, 2012) but also
in designing ear prostheses (Gan et al. 2010). In the
absence of adequate data on TM thickness distribu-
tion, most mathematical models tend to make overly
simplified assumptions regarding the thickness of the
TM, in some cases, to the extreme of assuming a
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single thickness value across the entire membrane.
TM thickness also provides valuable information
about the state and functioning of the middle-ear
and is known to provide diagnostically useful infor-
mation about several middle-ear pathologies. For
example, it has been shown that the thickness of the
TM in healthy human subjects is significantly different
from the thickness in subjects with acute and chronic
otitis media (OM) (Nguyen et al. 2012; Monroy et al.
2015). A reliable method of determining in vivo TM
thickness distributions could, therefore, also enable a
more comprehensive diagnosis of various otologic
diseases.

One of the earliest measurements of human TM
thickness was performed by Kojo (1954), who report-
ed a thickness range of 30–120 μm based on
measurements performed at seven different locations
in seven TMs. Lim (1970) used light microscopy to
measure the thicknesses of 20 fixed adult TMs, and
reported a range of 30–230 μm for the pars flaccida
and 30–90 μm for the pars tensa regions of the TM.
Uebo et al. (1988) reported a mean TM thickness
value between 67 and 90 μm for ten different sites in
96 normal TMs from 78 subjects of varying age. In
another study, Ruah et al. (1991) performed thickness
measurements in 46 normal TMs harvested at autopsy
from subjects between the ages of 2 days and 91 years
using light and electron microscopy. A more system-
atic imaging approach for characterizing the thick-
ness distribution for the human TM was described by
Kuypers et al. (2006), in which the investigators, using
confocal microscopy, measured the TM thickness
along a line parallel to the manubrium, joining the
umbo inferiorly to the annulus, and also along six
other lines perpendicular to the manubrium between
the superior and inferior ends of the TM. The authors
reported a mean thickness range of 40–120 μm in the
central region of the three TMs used in the study.
More recently, Van der Jeught et al. (2013) used
optical coherence tomography (OCT) to obtain full-
field thickness distributions for six TMs harvested
from human cadavers.

The ability of OCT to provide cellular-level axial
resolution over an imaging depth of a few millimeters,
in a non-invasive and non-contact manner, makes it
an attractive modality for TM imaging. Several recent
studies from our group and others have demonstrated
the ability of OCT to visualize the TM and the middle-
ear structures behind the TM (Pitris et al. 2001;
Djalilian et al. 2008; Nguyen et al. 2012; Shelton et al.
2014; Monroy et al. 2015). In particular, an imaging
system integrating low coherence interferometry
(LCI), which is essentially a non-scanning version of
OCT, with a modified video otoscope has been shown
to be a simple and promising imaging tool for single-
point measurements of in vivo TM thickness (Nguyen

et al. 2010, 2012). Typical data acquired by the
combined LCI-otoscope system comprises a sequence
of images of partial views of the TM and correspond-
ing 1-D depth resolved scattering profiles, obtained
from multiple locations on the TM.

In this study, we present an approach to obtain
thickness distributions for the in vivo human TM by
using data acquired from a combined LCI-otoscope
system. TM thickness maps are obtained by mapping
the LCI imaging sites onto an anatomically accurate
wide-field image of the TM generated by mosaicking
the sequence of multiple small field-of-view video-
otoscopy images of the TM. We also report descriptive
statistics of the thickness measurements obtained
from the different regions of the TM and discuss the
general trends of TM thickness distribution. This
study, to the best of our knowledge, is the first to
report full-field thickness distribution measurements
for the in vivo human TM.

MATERIALS AND METHODS

Imaging System and Data Collection

The hand-held Fourier-domain LCI system used in
this study was built in-house for clinical imaging. As
shown in Figure 1A, the reference and detection arm
of the LCI sys tem includes a broadband
superluminescent diode (SLD) (Broadlighter S930,
Superlum, Ireland), centered at 940 nm wavelength
with a bandwidth of approximately 70 nm full width at
half maximum (FWHM) as the optical source, and a
spectrometer unit (COBRA, Wasatch Photonics, USA)
with a spectral range of 940 ± 40 nm and a line rate of
up to 40 kHz as the detector. Additional optical
components include a 2 × 2 fiber coupler, with
polarization paddles on the reference and sample
ports of the fiber coupler, and a free-space reference
arm with a mirror for reflecting light back into the
interferometer.

The hand-held imaging probe houses the sample
arm of the interferometer, along with the optics for
video otoscopic imaging. The probe nose-cone was
extracted from a commercial otoscope (R.A. Bach
Diagnostics, USA) and modified to include a focusing
lens. White light is delivered from an LED in the
probe housing to the sample via a fiber bundle
concentrically arranged at the distal end of the probe
nose-cone. The TM surface is imaged onto a minia-
ture camera (MU9PC-MH, Ximea, Germany) using
focusing optics located in the handle of the probe.
The optical path corresponding to the video imaging
(visible) is separated from the LCI imaging path
(near-infrared) using a dichroic mirror.

A data-point obtained from the combined LCI-
otoscope system comprises a surface image of the TM

404 PANDE ET AL.: A Mosaicking Approach for In Vivo Thickness Mapping



and corresponding depth-resolved LCI scan data
acquired at a fixed point in the field-of-view (FOV)
of the surface image, as shown in Figure 1B, C,
respectively. The site on the TM from which the LCI
data was obtained is marked by a red asterisk in the
surface image shown in Figure 1B. The TM thickness
at the imaging site was obtained by computing the
distance between the two peaks in the LCI data, which
correspond to the two layers of the TM, namely, the
epidermal (outside) and the mucosal (inside) layers.
More specifically, the TM thickness at each imaging
site was estimated as the average thickness obtained
from a sequence of 100 depth resolved profiles, or A-
scans, which were acquired at a rate of 1 kHz. The
averaging was performed to provide a more reliable
estimate of TM thickness. To obtain the average
thickness from a sequence of A-scans, a semi-
automated approach was followed in which the
multiple 1-D A-scans were first stacked together to
build a 2-D M-scan. In the M-scan, the depth
information is displayed along the x-axis and the y-
axis contains the repeated A-scan measurements.
Treating the M-scan as an image, the TM was
subsequently segmented by performing an image
thresholding operation based on a user-specified
threshold level and a region of interest, and the TM
thickness was finally obtained as the average thickness
of the segmented TM. To account for the path length
change introduced by the refractive index (RI) of the
TM, based on the RI measurements reported by Van

der Jeught et al. (2013), a bulk RI of 1.44 was assumed
while estimating the TM thickness from LCI data.
Data were acquired from multiple locations on the
TM at a rate of 2 data-points per second (surface
image and corresponding LCI data) by manually
moving and pointing the hand-held imaging probe
over different regions of the TM. On average, 500
data-points were acquired from each TM.

Mosaicking Algorithm

Most image mosaicking techniques begin with an
assumption of a suitable motion model describing the
alignment between a pair of images. The motion
model is characterized by a 2-D transformation
matrix, which describes the coordinate transforma-
tion from one image to the other. Once the motion
model is chosen, the parameters of the model are
estimated by following either an intensity-based ap-
proach or a feature-based approach (Szeliski 2006). In
intensity-based methods, the model parameters are
estimated by optimizing a suitable similarity metric
representing the difference between pixel intensities
of an image pair. Commonly used metrics include
mean squared error, cross-correlation, or mutual
information. Because the metric directly depends on
pixel intensity values, these methods are sensitive to
image deterioration resulting from various factors
such as non-uniform illumination and defocus.

FIG. 1. A Schematic of the combined LCI-otoscope imaging system used in the study. B TM surface image, similar to a video-otoscope image,
acquired by the CCD camera. C Depth-resolved LCI data acquired at the imaging site marked by the red point in (B). The two prominent peaks
correspond to the epidermal and the mucosal surfaces of the TM. TM thickness is estimated as the distance between the two peaks.
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Feature-based techniques rely on matching land-
mark points between images. In these techniques, a
set of matching image features such as edges, corners,
or other geometrical structures are first extracted
from the images, and subsequently, the optimal image
registration parameters are obtained by maximizing a
similarity measure computed from the matched
features. Some of the more popular feature-
matching methods include Scale-Invariant Feature
Transform (SIFT) (Lowe 1999) and Speeded Up
Robust Features (SURF) (Bay et al. 2006). Unlike
intensity-based methods, feature-based methods do
not directly depend on the actual pixel values in an
image, but rather on image features, which makes
these methods more robust to variations in image
quality. The performance of feature-based methods,
however, largely depends on reliable detection of
matched image features, which is challenging in cases
when the images lack sharp distinctive features.

While several image registration techniques have
been reported in the biomedical literature, mostly for
retinal imaging (Can et al. 2002; Yang and Stewart
2004; Chanwimaluang et al. 2006; Jupeng et al. 2008;
Li et al. 2011), these techniques are not directly
applicable to TM image mosaicking for two main
reasons. First, unlike retinal images, which have
several distinctive features such as the bifurcations
and crossovers of the blood vessels, TM images
predominantly contain large homogeneous, non-
vascularized regions lacking in sharp features.
Second, due to the specular nature of the TM, the
spatial distribution of intensity both within and
between surface images of the TM is very heteroge-
neous depending on the angle and distance of the
imaging probe. To address these challenges of TM
image mosaicking, we developed a novel two-step
mosaicking algorithm, wherein a coarse image regis-
tration based on the correlation of gross image
features is followed by a finer intensity-based
coregistration process. In the following, we describe
the various steps of the proposed algorithm, which are
also outlined in the flowchart shown in Figure 2.

The proposed mosaicking procedure begins with
pairwise registration of consecutive pairs of images. As
shown in the dashed box in Figure 2, the pairwise
local registration process was performed in three
steps. In the first two steps, a coarse feature-based
registration of the two images was performed. For
reliable image registration in the presence of imaging
artifacts such as non-uniform illumination and blur-
ring, which are inevitably present in images acquired
from a hand-held imaging probe, only binary features
were used for performing the coarse registration. To
further mitigate the effect of the aforementioned
imaging artifacts, an adaptive thresholding technique,
preceded by local histogram equalization for contrast

enhancement (Gonzalez et al. 2010) and followed by
morphological area opening (Soille 2013) to get rid of
insignificant spurious features, was used to extract the
binary features from the images (step 1 in Fig. 2). After
extracting the binary features from the two images
constituting the image pair, in step 2, the coarse
registration of the images was performed by assuming
a translation-only transformation model. The optimal
translation parameters of the model were obtained as
the coordinates of the maxima of the normalized cross-
correlation of the two binary images obtained in the
feature extraction step. Finally, in step 3, an intensity-
based finer registration of the coarsely registered images
was performed. As mentioned earlier, in intensity-based
image registration, a similarity metric based on the
image pixel values is optimized to estimate the param-
eters of the transformation matrix.

In the proposed algorithm, an affine transforma-
tion was chosen as the motion model and the
parameters of the transformation matrix were esti-
mated by optimizing the mutual information (MI)
between the two images. MI is a metric that measures
the dependence between two random variables. In
image processing, MI is used as a measure of similarity
between two images based on the individual and joint
image histograms of the two images. As a measure of
image similarity, MI is perhaps one of the most widely
used measure for performing image registration
because of its desirable properties such as robustness
to the presence of outliers and efficient computation.
For improved convergence, the finer registration was
performed only over a region of interest (ROI) that
contains significant features. This ROI was identified
as the area bounded by the 5th and 95th percentile of
the coordinates of the region of overlap between the
two coarsely registered binary images obtained from
the previous step.

As shown in the flowchart in Figure 2, the process of
pairwise registration is iteratively performed for all
image pairs starting from the first image, which is also
assumed to be the reference image. Denoting the
transformation matrix characterizing the coordinate
transformation between the image pair {In, In + 1} by
T{n,n + 1}, the transformation matrix between a particular
image In + 1 referenced with respect to the first image is
then obtained by concatenating the preceding pairwise
transformation matrices, i.e., Tn + 1 = Πn

j = 1T{j,j + 1}. The
concatenation process provides a means of mapping the
individually coregistered images in their local coordi-
nate system to the mosaic coordinate system.

While the aforementioned mosaicking approach
works well for a small set of images, in cases where a
large number of images have to be coregistered, the
concatenation of the pairwise transformation matrices
results in an accumulation of errors leading to global
alignment errors in the final mosaic (Capel 2004;
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Szeliski 2006). This problem is of greater concern for a
sequence of images that loops around, re-visiting parts
of the imaging scene multiple times at different time
points. This is a well-known and well-studied problem in
computer vision and various methods to overcome this
problem have been reported in the literature. In the
current proof-of-concept study, we follow a very simple
approach, wherein the sequence of images was manu-
ally divided into smaller subsequences of images, which
were combined to create submosaics following the
mosaicking procedure described earlier. The same
mosaicking process was subsequently applied to the
submosaics to obtain the final mosaic.

The final step in generating a mosaic is to blend the
individual images constituting the mosaic to remove the
edges or seams which can occur due to significant
differences in brightness and contrast between images.
A simple image blending approach was used in this study,
in which the pixels corresponding to the overlapping
regions between a pair of images in the mosaic were
assigned the maximum pixel value of the two images.

Since the spatial coordinates of the LCI beam are the
same for each surface image, the spatial locations of the

points on the TM where the LCI data were acquired
could be tracked by using the same coordinate transfor-
mation matrices that are used to generate the mosaic.
Consequently, once all the surface images are regis-
tered, the locations corresponding to the LCI imaging
sites were readily identified and marked on the full-field
mosaic of the TM. Because the LCI measurements were
performed only at 500 points (on average) on the TM, it
was not possible to generate a Btrue^ thickness map for
the entire TM. However, treating the thickness mea-
surements at various points on the TM as scattered data
and assuming that the thickness varies smoothly over the
entire surface of the TM, scattered data interpolation
techniques can be employed to obtain a representative
thickness distribution map. One such interpolation
algorithm based on penalized least squares regression,
proposed by Wang et al. (2012), was used in our study to
generate the TM thickness distribution maps.

Subject Recruitment and Enrollment

Subjects for this study were recruited and enrolled
under a protocol approved by the Institutional Review

FIG. 2. Flowchart describing the processing steps of the proposed mosaicking algorithm.
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Boards (IRB) of the University of Illinois at Urbana-
Champaign and Carle Foundation Hospital, Urbana,
Illinois. The subjects were recruited from and imaged in
the Biophotonics Imaging Laboratory at the University
of Illinois at Urbana-Champaign. A total of seven TMs
from six human volunteers were imaged for this study.
Subjects’ ages ranged from 22 to 37 years.

RESULTS

The proposed algorithm was first validated on a smaller
sequence of two in vivo TM images acquired from two
subjects. The validation results from the two subjects are
displayed in Figure 3A and B. Panel a in Figure 3A and B
shows the sequence of the small FOV images covering
different regions of the two TMs. Themosaics generated

from these images by using the proposed technique are
shown in panel b. The red markers on the mosaicked
images correspond to locations of the LCI beam as the
imaging probe was moved across the TM surface to
image different locations on the TM. For comparison,
the TM images acquired using a commercial video-
otoscope (Welch Allyn Digital MacroView) are displayed
in panel c.

Post-validation, the mosaicking technique was ap-
plied to data obtained from imaging four healthy
in vivo TMs (TM1–TM4). Figure 4 shows the results of
the various steps of the mosaicking process for TM1.
As described earlier, several submosaics were com-
bined to obtain a globally consistent mosaic.
Figure 4A shows the submosaics obtained by using
the proposed algorithm, which were subsequently
mosaicked to form the final mosaic shown in
Figure 4B. As can be seen, the mosaic in Figure 4B
provides a complete view of the TM, which matches
well with the video-otoscope image shown in
Figure 4C. In Figure 4D, the red points plotted on
top of the mosaicked image indicate the locations of
the LCI beam, as the probe was moved across the
surface of the TM for acquiring data. The thickness
values obtained from the LCI data acquired at the
locations marked by red points in Figure 4D were
used to obtain an interpolated representative thick-
ness distribution map of the TM, which is shown in
Figure 4E as a surface plot to better visualize the
relative thickness of the different regions of the TM.
Finally, Figure 4F shows the coregistered thickness
distribution map overlaid on the mosaic image for
better interpretation of the thickness data.

Likewise, the results obtained from TM samples
TM2–TM4 are presented in Figures 5, 6, and 7. Panel
A in each of these figures shows the mosaicked image of
the TM. The video-otoscope image of the TM is shown
in panel C for comparison. Panels B and D in each of
these figures show the thickness distribution map and
the overlay image of the thickness distribution map and
the mosaic image, respectively. The thickness distribu-
tion maps for all cases show a region of relatively large
thickness starting at the umbo and extending along the
manubrium to include the pars flaccida and the
posterior fold at the superior end of the TM. This
thicker region is surrounded by a thinner pars tensa
region of the TM. Moreover, an increase in thickness
around the annular ring surrounding the pars tensa
region is also visible in the surface plots of the thickness
distributionmaps shown in panel B of the images. These
general thickness distribution trends agree with the
trends expected in a healthy TM.

To demonstrate the potential application of the
proposed technique in clinical diagnosis, the TM of a
subject with tympanosclerosis was imaged. The video-
otoscope image of the TM, shown in Figure 8A, shows

FIG. 3. Validation results of the mosaicking algorithm from two
subjects, shown in (A) and (B). (a) Montage showing the sequence of
TM images acquired during the imaging process. (b) Wide FOV
mosaic image obtained using the mosaicking algorithm. (c) Corre-
sponding video-otoscope image of the TM, shown for comparison.
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a white chalky patch with irregular boundaries, a
typical presentation of tympanosclerosis. Figure 8B
shows the mosaic obtained from images acquired over
the region of interest shown by the orange dashed
box in Figure 8A, and the corresponding thickness
distribution map overlaid on top of the mosaic is
shown in Figure 8C. The overlay image clearly shows
that the white chalky, scarred region of the TM, which
covers a significant part of the pars tensa region, has a
thickness much higher than the thickness values
typically expected for the pars tensa in healthy TMs
(Figs. 4–7).

The quantitative thickness measurements are report-
ed in Table 1 for different anatomical regions of the TM.
The different regions, namely, the pars flaccida and the
four quadrants of the pars tensa, were manually
identified and the thickness statistics for each region
were computed from the measurements obtained from
the imaged sites in the corresponding regions.
Moreover, to ensure that only sites from the pars
flaccida and pars tensa were used in the analysis, the
region around the umbo, the manubrium of the
malleus, and the anterior and posterior folds were
excluded while selecting the various regions of the TM.

As expected, the pars flaccida was found to be
significantly thicker than the pars tensa. The ratio of
the mean thickness of pars flaccida to the mean
thickness of pars tensa was computed to be 2.2 for
TM1, 2.0 for TM2, 2.2 for TM3, and 1.7 for TM4. The
mean and pooled standard deviation of the thickness
of the pars tensa for all TM samples was found to be
85.6 ± 33.6 μm. The mean and pooled standard
deviation of thickness of the different regions of the
TM, computed over all TMs, were found to be 137.7 ±
56.1 μm for the posterosuperior quadrant, 93.4 ±
23.9 μm for the posteroinferior quadrant, 76.4 ±
20.5 μm for the anterosuperior quadrant, and 79.2 ±
20.0 μm for the anteroinferior quadrant. Amongst the
different quadrants of the pars tensa, the overall
mean thickness of the posterosuperior quadrant was
found to be higher than the other quadrants.
Likewise, the anterosuperior quadrant had the lowest
overall mean thickness. The mean thicknesses of the
quadrant pairs of the four regions of the pars tensa,
namely, anterior, posterior, superior, and inferior,
were compared for each TM sample by means of an
unpaired two-sided unequal variances t test. The
comparison results are shown in Figure 9, along with

FIG. 4. Mosaicking results for TM1. A Montage showing the
sequence of TM images acquired during the imaging process. B
Wide FOV mosaic obtained using the mosaicking algorithm. C
Corresponding video-otoscope image of the TM. D LCI imaging sites

plotted as red points over the mosaicked image. E Thickness
distribution map shown as a surface plot (thickness values in μm).
F Thickness distribution map overlaid on the mosaicked image
(thickness values in μm).
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Table 2, which presents a summary of the results of
the statistical analysis. As can be seen in Figure 9, in
the anterior region, the inferior side was found to be
thicker than the superior side (Fig. 9A), a trend that
was reversed in the posterior region, where the
superior side was, in general, thicker than the inferior
side (Fig. 9B). Likewise, as shown in Figure 9C, the
posterior side was found to be thicker than the
anterior side in both the superior and inferior
regions. Moreover, the difference between the anteri-
or and posterior sides was more marked in the
superior region (Fig. 9C) as compared to the inferior
region (Fig. 9D), which suggests a larger asymmetry in
thickness distribution in the superior region of the
TM.

DISCUSSION

In this study, we developed an approach for charac-
terizing the thickness distribution for the in vivo
human TM. At the core of our approach is a novel
image mosaicking algorithm for generating a full-field

surface image of the TM with a coregistered thickness
map from a sequence of TM surface images and
corresponding LCI data obtained using a combined
LCI-otoscope imaging system. We obtained thickness
distribution maps in vivo for four healthy human TMs
and one TM with tympanosclerosis. We observed large
intra- and inter-sample variations in TM thickness.
The range of the thickness values for the pars flaccida
region of the healthy TMs was found to be 76.1–
339.1 μm, whereas the thickness of the pars tensa
ranged from 33.3 to 248.2 μm. The variability
observed in our study is in agreement with the
findings of several previously published studies (Lim
1970; Uebo et al. 1988; Ruah et al. 1991; Kuypers et al.
2006). The wide range of TM thickness underlines the
importance of characterizing and taking into account
the variability in thickness distribution for the TM for
accurate modeling of middle-ear dynamics and anal-
ysis of the results obtained thereof.

While substantial variation in both the overall
thickness and the thickness of different regions of the
TM was observed, some similarities in the thickness
distribution trends were noted. The pars flaccida was in
general thicker than the pars tensa in all TM samples, an

FIG. 5. Mosaicking results for TM2. A Mosaicked TM image. B Thickness distribution map shown as a surface plot (thickness values in μm).
C Corresponding video-otoscope image of the TM. D Thickness distribution map overlaid on the mosaicked image (thickness values in μm).
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observation also made by Lim (1970) and Ruah et al.
(1991). In the pars tensa, the overall mean thickness of
the posterosuperior quadrant was found to be higher
than those of the other quadrants. A similar finding was
reported by Uebo et al. (1988) and Ruah et al. (1991).
Moreover, as reported by Van der Jeught et al. (2013),
and confirmed in our study, the variance in thickness of
the posterosuperior quadrant was found to be higher
than those of the other quadrants. It is interesting to
note that the surface plots of the thickness distribution
maps of the healthy TM samples show a ridge at the light
reflex of the TM, which corresponds to a localized
region of higher thickness. This observation concurs
with the findings of Kuypers et al. (2006) and Van der
Jeught et al. (2013), where a local thickening in the
anteroinferior quadrant of the TM was observed.
Moreover, as pointed out in several previously published
studies, and confirmed by the results of our study, the
thickness distribution inferior to the umbo was found to
be symmetric between the anterior and posterior side,
whereas it becomes more asymmetric in the superior
part of the TM. The mean thickness of the pars tensa
ranged from 76.0 to 97.4 μm, which is similar to the
typical values used by researchers in finite element

modeling of the TM (Wada et al. 1992; Koike et al. 2002;
Volandri et al. 2011).

It must be emphasized that as noted above, and in
several previous studies, the thickness values obtained
for the different regions of the TM depend markedly
on various factors such as the anatomical variations
and ages of the subjects (Ruah et al. 1991) and the
choice of the measurement sites. Therefore, the
thickness values reported in our study and the
comparisons made with other studies should be
interpreted as general trends, rather than as absolute
quantitative results. It is also important to point out
that, while estimating the thickness of the TM from
LCI data, it was assumed that the imaging beam was
normally incident on the TM. In practice, the angle
between the imaging beam and the TM depends on a
multitude of factors. While some of these factors, such
as the angle of the TM with respect to the external ear
canal, can be quantitatively accounted for based on
the average values reported in the literature (Ikui
et al. 1997; Todd 2009), other factors, such as the
geometry of the ear canal, and the angle of the probe
with respect to the TM, which depend on both the
subject being imaged and the imaging conditions

FIG. 6. Mosaicking results for TM3. A Mosaicked TM image. B Thickness distribution map shown as a surface plot (thickness values in μm).
C Corresponding video-otoscope image of the TM. D Thickness distribution map overlaid on the mosaicked image (thickness values in μm).
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(probe orientation etc.), are extremely difficult to
quantify reliably. The assumption of normal inci-
dence, therefore, provides a potential source of error
in our thickness estimates. More specifically, if the TM
has an angular tilt of θ along the axis perpendicular to
the imaging beam, then the thickness of the TM
based on LCI data is overestimated by a factor of
1/cos θ. The inability to determine the angle between
the imaging beam and the TM, in our study, results
primarily from the absence of a lateral scanning

mechanism in our imaging probe. The choice of not
incorporating a lateral scanning mechanism in our
handheld probe was guided by the need to provide a
low-cost imaging solution for TM thickness mapping.
Nevertheless, to mitigate the angle-related error in
thickness measurements, a lateral scanning scheme
could be incorporated in our hand-held probe design
to obtain B-scans of the TM. The 2-D cross-sectional
depth-resolved scans of the TM could then be used to
reliably obtain thickness measurements, even in the

FIG. 7. Mosaicking results for TM4. A Mosaicked TM image. B Thickness distribution map shown as a surface plot (thickness values in μm).
C Corresponding video-otoscope image of the TM. D Thickness distribution map overlaid on the mosaicked image (thickness values in μm).

FIG. 8. Mosaicking results for a TM with tympanosclerosis. A Video-otoscope image of the TM showing a chalky white patch with irregular
boundaries, characteristic of tympanosclerosis. B Mosaicked image obtained over the region enclosed by orange dashed box in (A). C Thickness
distribution map overlaid on the mosaicked image (thickness values in μm).
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case when the TM is not exactly perpendicular to the
imaging beam (Hubler et al. 2015). An alternative
method of correcting for geometric and refractive
distortions could involve using sophisticated ray-
tracing-based methods (Westphal et al. 2002, Ortiz
et al. 2010). The correction methods based on lateral
scanning would, however, impose stringent require-
ments on stability during data acquisition, which
would be extremely challenging, if not impossible, to
achieve in in vivo imaging applications based on hand-
he ld probe s . Moreove r , incorpora t ing a
microelectromechanical systems (MEMS) scanner in
a hand-held imaging probe to enable lateral scanning
would also significantly increase the cost of the
imaging system.

Another potential source of variability in thickness
estimation arises from the semi-automated approach
used to obtain the average thickness of the TM. As
described earlier in this article, the semi-automated
approach relies on a user-specified threshold value for
the segmentation of the TM in an M-scan. Due to the
inherent noise in each A-scan, using a single thresh-
old value for an M-scan introduces variability in
thickness estimation. Based on the results of a
simulation study, where a plastic sheet of uniform
thickness, used as a TM phantom, was imaged using
our imaging probe, we found the variability in
thickness estimation to be less than 10 %. This level

of variability is acceptable for most diagnostic pur-
poses, such as for the differentiation of otitis media
(OM), where the difference in thickness between a
normal TM and a TM with acute or chronic OM is
usually on the order of 100–200 % (Monroy et al.
2015).

Though this study presents an important proof-of-
concept approach to obtain thickness distribution maps
of the in vivo human TM, some limitations exist that
warrant discussion. First, an affine model for camera
motion was assumed for image registration in this study.
While this assumption is perhaps not overly restrictive, it
might not be strictly satisfied while imaging the periph-
eral regions of the TM, where the curvature of the TM,
combined with significant tilt and pan of the hand-held
probe to enable imaging, may introduce projective
distortion in the images. In such cases, a more accurate,
albeit computationally more demanding, projective
motion model might be more appropriate.

Second, the selection of the submosaics in the
global registration step of the proposed approach was
performed based on visual assessment of the
submosaics. To automate this step, an approach
similar to that described by Mann and Picard (1997)
could be followed, where the choice of the submosaics
is determined by computing the local minima of the
mean-squared registration error. Likewise, more so-
phisticated techniques for image blending such as

FIG. 9. Comparison of the mean thicknesses of the quadrants of the anterior, posterior, superior, and inferior regions of the TM, shown in (A–D),
respectively, for TM1–TM4. Bars indicate standard deviation. Statistical significance was tested by means of a two-sided unequal variances t test
(*p G 0.05, **p G 0.01, ***p G 0.0001).
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Laplacian pyramidal blending and gradient domain
blending (Szeliski 2006) could also be used.

Third, it must be pointed out that an average of about
26 % of the acquired images and corresponding LCI data
were manually excluded from this study because of their
low quality. Figure 10 shows representative examples of
such images. Figure 10A shows an example of an image
where a significant portion of the FOV was occluded by
the ear canal, which appears as an off-center diffused hazy
region in the image. The image shown in panel B of the
figure shows an example of an image that contains a

featureless region of the TM and is therefore not suitable
for image registration. A possible way to automate the
exclusion of these two types of image could be to set a
threshold in the pairwise local registration step of the
mosaicking algorithm (step 1 in Fig. 2) to determine
whether enough features are present in the image for it to
qualify as a suitable image for mosaicking. The third type
of image that was excluded from the study, an example of
which is shown in Figure 10C, comprised images that were
severely defocused. This defocus blur can be mitigated by
improving the camera optics to achieve greater depth-of-

FIG. 10. Representative examples of poor quality images that were excluded from the study. A An image where a significant portion of the FOV
is occluded by the ear canal. B Example of an image that contains a featureless region of the TM. C A severely defocused image.

TABLE 1
Descriptive statistics of thickness measurements of TM1–TM4, grouped by different regions of the TM

Sample Number of Measurements Min (microns) Max (microns) Mean (microns) SD (microns)

Pars flaccida
TM1 19 113.9 236.6 191.5 35.0
TM2 26 100.0 339.1 175.0 75.6
TM3 12 104.0 332.4 170.0 60.6
TM4 28 115.8 206.9 163.4 23.4

Posterosuperior
TM1 11 76.1 257.2 152.7 60.1
TM2 32 73.6 168.9 104.7 24.0
TM3 15 73.5 370.0 200.8 93.4
TM4 17 89.5 248.2 134.4 54.3

Posteroinferior
TM1 41 62.1 162.9 105.9 20.7
TM2 6 81.0 136.0 115.5 20.0
TM3 57 57.7 175.9 79.8 18.3
TM4 21 75.4 208.5 99.7 39.6

Anterosuperior
TM1 97 47.5 195.5 74.8 23.1
TM2 46 50.6 91.6 70.2 8.9
TM3 42 40.0 80.1 58.0 10.2
TM4 95 50.0 205.5 89.3 24.5

Anteroinferior
TM1 162 33.3 147.1 82.6 26.0
TM2 14 68.8 150.0 93.7 24.5
TM3 138 42.5 92.2 66.4 9.5
TM4 50 60.4 130.2 99.4 17.5

Complete pars tensa
TM1 311 33.3 257.2 85.7 30.7
TM2 98 50.6 168.9 87.6 24.8
TM3 252 40.0 370.0 76.0 40.8
TM4 183 50.0 248.2 97.4 31.4
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focus, thereby allowing for blur-free imaging over a wider
range of probe-to-TM distances.

Finally, as stated earlier, the current imaging system
has a rather limited acquisition rate of 2 data-points per
second. It must be emphasized though that this limited
acquisition rate is a result of the delay that had to be
introduced between the acquisition of successive data-
points to circumvent a certain software-hardware syn-
chronization issue and not because of a slow A-line
acquisition rate, which was 1 kHz, or CCD image read-
out rate, which was approximately 6 fps. In other words,
while each data-point was acquired at an effective rate of
2 data-points per second, the measurements constitut-
ing the data-point were acquired at themuch faster rates
of 1 kHz (for LCI data) and 6 fps (for CCD images),
thereby not imposing any strict stability requirements
during imaging. In fact, in our study, no special
procedure was followed to restrict either the subject or
operator movement during data acquisition, other than
what would be required during a standard otoscopic
examination in a typical clinical setting. Nevertheless,
eliminating the delay between the acquisition of succes-
sive data-points and using a faster CCD camera could
significantly reduce the imaging time.

CONCLUSION

The present study developed an approach to obtain,
for the first time, thickness distribution maps for the
in vivo human TM. The data used in our study were
acquired from a hand-held imaging system combining
LCI for single-point thickness measurements with
video imaging for recording the surface images of
the TM as the imaging probe is moved and directed
across the membrane. We envision that the proposed

approach has the potential to not only provide useful
information for advancing our fundamental under-
standing of the functioning of the middle-ear,
through experiments and modeling, but could also
provide significant diagnostic information in the form
of normative TM thickness distribution maps, much
like the retinal thickness maps (Zeimer 1998; Jaffe
and Caprioli 2004) that are routinely used in ophthal-
mological disease diagnosis and treatment.
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