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In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images.
Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical
field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of
the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as
is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality through-
out the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the
CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the
pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT
data without the use of hardware adaptive optics. This enables both computational measurement and correction
of optical aberrations. © 2018 Optical Society of America

OCIS codes: (100.5090) Phase-only filters; (110.3175) Interferometric imaging; (110.3200) Inverse scattering; (110.4500) Optical

coherence tomography; (110.1758) Computational imaging.

https://doi.org/10.1364/JOSAA.35.000466

1. INTRODUCTION

Measurement and correction of aberrations is often an important
step in obtaining high-resolution images in optical microscopy
[1]. In some cases the imaging optics may be imperfect due to
physical limitations or design constraints. Additionally, imaging
below the surface of biological tissue is complicated by sample-
induced aberrations, which arise from the spatially varying refrac-
tive index of the tissue. In the case of living or dynamic samples,
these aberrations can also be time varying. Therefore, it is nec-
essary to devise a strategy to determine and compensate for the
wavefront aberrations to obtain a diffraction-limited image.

Typically this is done using adaptive optics (AO) compo-
nents, such as a wavefront sensor and deformable mirror,
to measure and correct the aberrated optical wavefront.
However, these additional hardware components can be expen-
sive and difficult to align and maintain. The hardware aberra-
tion correction is only optimized for a particular location within
the 3D imaging volume, and calibration error, fitting error,
measurement error, and bandwidth error all contribute to
the presence of uncorrected aberrations [2].

Alternatively, interferometric detection provides access to
both the amplitude and the phase of the backscattered light.
Access to this phase information provides computational
control of the full complex wavefront, allowing computational
image formation based upon models of the imaging experi-
ment. In this way, aberrations can be corrected postacquisition
without the need for adaptive optics hardware.

Optical coherence tomography (OCT)measures a broadband
interferometric signal to reconstruct the three-dimensional struc-
ture of scattering samples from backscattered light [3]. Since its
invention, OCT has become an invaluable tool in medicine and
biology. It is now the standard of care for retinal imaging and has
been applied in various other clinical settings, as well as in non-
biological materials imaging [4]. Computational adaptive optics
(CAO) is a computational imaging method that modifies the
spatial frequency content of the OCT data to correct for optical
aberrations [5–7]. CAO has primarily been used for aberration
correction, and it has been demonstrated for imaging of tissues
such as in vivo skin and ex vivo brain [8], as well as the living
human retina [9–11].
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In some cases, it may also be desirable to perform computa-
tional aberration measurements. For example, aberration mea-
surements can be used to determine the flaws in an imaging
system design, and three-dimensional mapping of aberrations
in biological tissue can be used to optimize system parameters
[12]. Wavefront measurement can also be medically relevant, as
in aberrometry of the human eye [2], and sample-induced
aberrations may prove to be a source of contrast for various
tissue types.

CAO acts on OCT data in the Fourier domain by a phase-
only filter. However, due to the double-pass nature of the OCT
imaging experiment, this CAO correction filter does not
directly correspond to the aberrations of the imaging pupil.
Previous work has attempted to directly compare the CAO cor-
rection filter with the true wavefront measurement acquired
with a Shack–Hartmann wavefront sensor [13]. However, the
complicated relationship between the pupil wavefront and the
CAO correction filter was only explored for defocus, leaving
aberrations unaddressed.

We have developed new methods for recovering the wave-
front aberrations directly from the OCT data itself, without the
need for a wavefront sensor or deformable mirror. These meth-
ods have been tested in simulation to determine sensitivity to
induced aberrations, as well as with cross talk between aberra-
tions. The results are shown to compare favorably with previ-
ously published hardware adaptive optics wavefront sensing
measurements.

2. COMPUTATIONAL ADAPTIVE OPTICS MODEL

A. OCT Signal Acquisition

The OCT signal is obtained through interference of backscat-
tered light from the sample with a coherent reference beam,
providing complex-valued data for each point within the im-
aged volume. An illustration of the imaging setup is given
in Fig. 1. Detailed derivations can be found in [14,15] and
are followed closely here. The complex-valued spectral domain
OCT signal is acquired as a function of wavenumber, k, at
each transverse scan location, �x; y� � �rk�. The focus remains
fixed at a particular depth, z0. The signal S�rk; k� can then be
written as

S�rk; k� �
ZZ

h�r 0k − rk; z 0 − z0; k�η�r 0k; z 0�d2r 0kdz 0; (1)

which is the convolution of the system point spread function,
h�rk; z; k�, with the sample susceptibility, η�rk; z�.

The system point spread function is given as

h�rk; z; k� � k2jP�k�j2f �−rk; z; k�g�−rk; z; k�; (2)

which is the multiplication of the input and output beam pro-
files, f �rk; z; k� and g�rk; z; k�, along with the power spectrum
of the laser source, jP�k�j2. In a standard OCT imaging system,
the input and output imaging pupils are the same. The beam
profile can be described by a plane wave representation,
G�qk; k�. Therefore, both the input and output beam profiles
are given by

g�rk; z; k� �
Z

G�qk; k�eiqk·rkeikz �qk ;k�zd2qk; (3)

where kz�qk; k� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − qk

q
. At the focus z � 0, the beam

profile is given by the Fourier transform of the imaging pupil
G�qk; k�.

The signal representation in Eq. (1) can be simplified by
transforming to the spatial frequency domain,

S̃�qk; k� �
Z

h̃�qk; z 0 − z0; k�η�qk; z 0�dz 0; (4)

where the (∼) denotes the two-dimensional Fourier transform
over the lateral scanning dimension. The transfer function is
then given as the transverse convolution, denoted as �k, of
the input and output pupil functions in the spatial frequency
domain,

h̃�qk; z; k� � k2jP�k�j2g̃�−qk; z; k� �k g̃�−qk; z; k�: (5)

The spatial frequency domain representation of the pupil
function is

g̃�qk; z; k� � G�qk; k�eikz �qk ;k�z ; (6)

which is the imaging pupil G�qk; k� propagated a distance z
away from the focus. Aberrations are modeled as phase varia-
tions in the imaging pupil, G�qk; k�. This leads to an aberrated
system transfer function via the autoconvolution operation, as
indicated in Eq. (5).

B. Aberration Correction

In computational adaptive optics, the aberrated system transfer
function is corrected by multiplication with a phase-only filter
in the spatial frequency domain,

S̃AC�qk; k� � HAC�qk; k�S̃A�qk; k�; (7)

where

HAC�qk; k� � e−iϕh�qk ;k�; (8)

and where subscript A indicates the aberrated data, and sub-
script AC indicates the aberration correction filter and aberra-
tion corrected data. The phase term ϕh�qk; k� corresponds to
the phase of the aberrated system transfer function. Under the
assumption that the deviation from the central wavenumber is
not too large, meaning �Δk∕kc�2 is negligible [7], the aberra-
tion correction filter can be evaluated at the central wavelength
and applied at each depth plane, zi, as

S̃AC�qk; zi� � HAC�qk; zi�S̃A�qk; zi�; (9)

where

Fig. 1. Illustration of the OCT imaging setup. The imaging beam
passes through the pupil G�qk; k� and illuminates the sample with
field g�rk; z; k�. The light is backscattered from the sample η�rk; z�
and is collected through the same imaging pupil.
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HAC�qk; zi� � e−iϕh�qk ;zi�: (10)

This filter can be determined through a variety of proce-
dures including image sharpness optimization, the guide-star
method, and the split-aperture method [5,16,17]. These are
analogous to sensorless AO, guide-star optimization, and the
Shack–Hartmann wavefront sensor in hardware AO. In any
case, the filter corresponds to the double-pass system transfer
function.

3. METHODS FOR WAVEFRONT
MEASUREMENT

A generic pupil function has both amplitude and phase,

G�qk; zi� � jG�qk; zi�jeiϕg �qk ;zi�; (11)

where the goal of wavefront measurement is to determine the
phase aberrations of the imaging pupil, ϕg . Through the CAO
aberration correction procedure, the phase ϕh is obtained. The
relationship between the pupil and system transfer function is,
to within a constant,

H �qk; zi� � G�qk; zi� � G�qk; zi�; (12)

where the propagation away from focus in Eq. (6) has been
absorbed into the function G�qk; zi�. The following sections
outline methods for estimating the aberrations of the pupil
phase. While the first two methods attempt to estimate ϕg
given ϕh, the final method estimates ϕg directly.

A. Asymptotic Method

A computational method termed interferometric synthetic
aperture microscopy (ISAM) solves the OCT inverse problem
through asymptotic approximations taken near and far from
the focus [14,18]. Although these approximations were per-
formed with an unaberrated imaging pupil, it is possible that
they may hold for small wavefront aberrations. The asymptotic
approximations taken in ISAM allow the complex autoconvo-
lution to be represented as a multiplication of stretched pupil
functions,

H �qk; zi� ≈ G�qk∕2; zi� × G�qk∕2; zi�: (13)

For the generic pupil function of Equation (11), the corre-
sponding transfer function under the asymptotic approxima-
tion is

H �qk; zi� ≈ jG�qk∕2; zi�j2ei2ϕg �qk∕2;zi�: (14)

The relationship between the strength of aberrations is then
simply a factor of two.

The phase aberrations are often represented as a weighted
sum of Zernike polynomials (see Appendix A). The pupil phase
can then be represented by

ϕg�qk; zi� �
X
n
cn�zi�Zn�sk�; (15)

where cn is the root-mean-square (RMS) variation of each cor-
responding Zernike aberration at depth zi. Note that for the
current model, the pupil aberrations are depth independent,
and the propagation away from focus can be approximated us-
ing the defocus term Z 4. Therefore the depth dependence of cn
will be left unnoted for convenience. Also note that the Zernike

polynomials exist over the unit circle. Therefore the coordinates
are normalized to extend over the limiting pupil defined by the
numerical aperture (NA),

sk �
�

qk
kcNA

�
: (16)

The transfer function phase determined using CAO with
Zernike weights dn can be similarly represented as

ϕh�qk; zi� �
X
n

d nZ n�sk∕2� ≈
X
n

2cnZ n�sk∕2�: (17)

An estimate of the Zernike weights for the pupil aberrations
can then be easily obtained as

ĉn �
dn

2
: (18)

This provides a simple relationship between the Zernike
weights of the CAO phase filter and the imaging pupil.

B. Autoconvolution Method

Instead of relying upon the asymptotic approximations of
ISAM, it is possible to retrieve the pupil phase via inverse au-
toconvolution. In this case, the autoconvolution relationship of
Eq. (12) still holds. However, the inverse autoconvolution is
complicated by the fact that ϕh is influenced by both the am-
plitude and phase of G�qk�. Therefore, it is necessary include
the pupil function amplitude. Gaussian beam illumination is
typical for a point scanned OCT system and will be assumed
here, although other amplitude profiles could be used. Passing a
Gaussian beam through a limiting circular aperture results in
the complex pupil function

G�qk� � circ�sk� exp
�
−s2k � i

X
n

cnZ n�sk�
�
; (19)

where circ�sk� is defined as unity for jskj ≤ 1 and zero
elsewhere.

Given the phase ϕh from the CAO correction and a model
for jG�qk�j, we can perform an optimization procedure to
search for the corresponding pupil phase [19]. The estimated
Zernike polynomial weights are calculated as

ĉn � argmin
ϕg�

P
n

cnZn

kG�qk� � G�qk� − jG�qk� � G�qk�jeiϕhk2
kG�qk� � G�qk�k2

:

(20)

This finds a pupil function whose autoconvolution has a
phase profile that matches the CAO filter.

C. Forward-Model Method

The previous two methods estimate the pupil aberrations from
the phase obtained by the CAO image correction; that is to say,
ϕg is estimated from ϕh. Alternatively, the pupil aberrations ϕg
can be estimated directly by incorporating the forward model
into the CAO procedure. In the absence of aberrations, a group
of image metrics known as image sharpness are maximized
[20–22]. Stated another way, aberrations can only decrease the
image sharpness. Therefore, it is possible to determine the ap-
propriate CAO phase filter by maximizing the image sharpness.
Here we define the image sharpness operator as
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I�S�x; y�� �
X
x;y

�S�x; y�S��x; y��2; (21)

where (*) indicates the complex conjugate. This operator cal-
culates the sum of the intensity squared across the image.

Typically, the image sharpness is optimized by searching
over possible phases ϕh, in accordance with Eqs. (9) and (10).
However, it is possible to generate the CAO phase filter via the
forward model as

HAC�qk� � exp�−i arg�G�qk� � G�qk���: (22)

The image sharpness optimization can then be performed by
searching over possible phases ϕg , providing a direct estimate of
the imaging pupil phase

ĉn � argmax
ϕg�

P
n
cnZn

I�F −1�SAC�qk���; (23)

where F −1� � indicates the inverse Fourier transform to the
spatial domain.

4. SIMULATION AND RESULTS

To determine the effectiveness of each method, OCT data was
simulated, allowing for the introduction of arbitrary aberrations
into the imaging pupil. The data used here were generated us-
ing the more exact model of Eqs. (21) and (29) from [14].
Simulated data were generated on a densely spaced 3D grid,
then resampled by a noninteger multiple to a coarser grid to
mimic data acquisition. The simulated OCT experiments
used a Gaussian spectrum with 1 μm central wavelength and
100 nm bandwidth, and the transverse imaging area was
128 μm × 128 μm acquired with a 1 μm step size. The NA
was 0.1, matching that of previous computational OCT experi-
ments [5,23]. The imaging pupil was constructed following
Eq. (19), with aberrations introduced into the pupil phase
using weighted Zernike polynomial functions,

ϕg�qk; k� � k
X
n

c�μm�
n Z n�qk∕�kNA��: (24)

Here cn was defined in units of micrometers (μm) corre-
sponding to optical path length, and the variation in wavenum-
ber was explicitly accounted for in the simulation. The image
sharpness optimization and inverse autoconvolution proce-
dures were performed on an Intel Core i7-5960X with 32 GB
of RAM using the MATLAB 2016a Optimization Toolbox.
The optimization time was approximately 0.59, 3.75, and
2.07 s for the asymptotic, autoconvolution, and forward model
methods, respectively.

The following sections outline a series of simulated experi-
ments in which the sensitivity, cross talk, and other character-
istics of the above methods are determined.

A. Sensitivity and Cross Talk

To determine the sensitivity to each aberration term, as well as
the cross talk between terms, single aberrations were applied in
the imaging pupil with increasing RMS. The imaging sample
consisted of in-focus point-scatterers with unit susceptibility,
such that the induced polarization was equal to the incident
field (see [24], Section 2.3). Aberrations up to 4th order were
applied (excluding tip/tilt and defocus) with RMS increasing

from zero to 0.6 rad at the central wavelength. The applied
aberrations were then estimated from the OCT data using each
of the three methods detailed in Section 3.

For the asymptotic and forward model methods, the wave-
front was estimated by correcting up to 4th order Zernike terms
(excluding tip/tilt). However, as a result of the autoconvolution
operation, the phase of the system transfer function is more rap-
idly varying than that of the imaging pupil. This means that
while ϕg is described accurately by Zernike terms up to 4th or-
der, ϕh may not be. The transfer function phase is represented
more accurately as more Zernike modes are used. It was exper-
imentally determined that the CAO optimization performed as
the first step in the autoconvolution method must include up to
at least 6th order Zernike modes. This provides an approxima-
tion of ϕh that is sufficiently accurate for performing the
inverse autoconvolution operation to 4th order imaging pupil
aberrations, and that was used for the results presented here.

The sensitivity was defined as the slope of the linear least-
squares fit between the estimated weights, ĉn, corresponding to
applied weights, cn. The cross talk was defined as the normal-
ized RMS variation in all aberration terms other than the
applied term, �P

mĉ
2
m≠n

�
1∕2

cn
; (25)

evaluated at the maximum applied aberration. A perfect esti-
mate would result in sensitivity equal to one and cross talk
equal to zero [25].

Aberration estimates obtained using the asymptotic approxi-
mation are shown in Fig. 2. In Figs. 2(a)–2(c), the estimated
weights are given for 2nd, 3rd, and 4th orders, respectively. An
ideal estimate is indicated by the dashed line for reference.
Notice that certain Zernike modes are nearly identical, differing
only in their rotation (e.g., astigmatism terms n � 3; 5).
Therefore the estimates for these terms are very close to one
another. The sensitivity and cross talk for each applied term
are shown in Fig. 2(d). There is reasonable performance only
for 2nd order aberrations, indicating that the asymptotic
approximation is not valid at higher orders. This is not unex-
pected, as the approximations used in this method were devel-
oped in the absence of phase aberrations.

The inverse autoconvolution method showed superior sen-
sitivity at all orders when compared with the asymptotic
method. The aberration estimates and corresponding metrics
are given in Fig. 3. The sensitivity at 2nd order was 0.95
and remained greater than 0.5 through 4th order. For coma
(terms n � 7; 8), the method overestimated the applied
aberration, but the sensitivity remained within 0.25 of the
ideal case.

Of the three proposed methods, the forward model method
had the most consistent performance across all orders as
demonstrated in Fig. 4. Additionally, the method did not over-
estimate any aberrations. The average sensitivity across all terms
was 0.81, while the average cross talk was 0.04.

B. Impact of Signal-to-Noise Ratio

In a realistic imaging scenario, the data will be corrupted by
noise. For OCT, this can be modeled by additive complex
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white Gaussian noise [14,26]. The simulations and measure-
ments of the previous section were repeated with peak signal-
to-noise ratio (SNR) varying from 50 dB down to 20 dB, where
the peak SNR was defined as

SNRpeak � 10 log10

�
max jS�rk�j2

σ2noise

�
: (26)

The resulting sensitivity and cross talk for the autoconvolu-
tion and forward model methods are shown in Fig. 5. As the
asymptotic method is not sensitive to higher orders, the results
are not included. Although the computational wavefront mea-
surement fails below a certain SNR threshold, it is important to
note that the computational image correction still succeeds.
This is in accordance with previous results [27].

At high SNR, both methods performed similarly to the
noise free case. However, as the SNR decreases, the tails and
sidelobes of the point spread function became buried in the
noise. Therefore, much of the point spread function shape
can be obscured. The performance of the autoconvolution
method began to suffer with peak SNR of 30 dB, where cross
talk approached the sensitivity for several aberration terms. At
20 dB, the results became unstable with estimated RMS far
beyond that which was applied.

The performance of the forward model method remained
strong down to 25 dB peak SNR. Here the average sensitivity
was 0.81, and average cross talk was 0.29. A comparison
between the average sensitivity and cross talk for the autocon-
volution and forward model methods is given in Fig. 6. A
comparable experiment was previously performed using a

̂ ̂

(a) (b)

̂

(c) (d)

Crosstalk
Sensi�vity

2nd order ( = 3, 5) 3rd order ( = 6 to 9)

4th order ( = 10 to 14)

Fig. 3. Measurement of single aberrations using the autoconvolu-
tion method. (a)–(c) The applied and estimated Zernike weights
are shown for 2nd, 3rd, and 4th order aberrations, respectively.
The dotted line corresponds to a perfect estimate. All Zernike weights
are in radians. (d) The sensitivity and cross talk were calculated for
each applied Zernike term.

(a) (b)

(c) (d)

Fig. 4. Measurement of single aberrations using the forward model
method. (a)–(c) The applied and estimated Zernike weights are shown
for 2nd, 3rd, and 4th order aberrations, respectively. The dotted line
corresponds to a perfect estimate. All Zernike weights are in radians.
(d) The sensitivity and cross talk were calculated for each applied
Zernike term.

(a) (b)

(c) (d)

Fig. 2. Measurement of single aberrations using the asymptotic
method. (a)–(c) The applied and estimated Zernike weights are shown
for 2nd, 3rd, and 4th order aberrations, respectively. The dotted line
corresponds to a perfect estimate. All Zernike weights are in radians.
(d) The sensitivity and cross talk were calculated for each applied
Zernike term.
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deformable mirror and Shack–Hartmann wavefront sensor
[25]. The average sensitivity and cross talk were 0.71 and 0.32,
respectively, and only included aberrations up to 3rd order.
Considering this, the performance of the forward model
method was comparable or superior to that of direct hardware
measurement.

C. Multiple Simultaneous Aberrations

Additional simulated experiments were performed with multi-
ple aberrations applied simultaneously in the pupil plane.
The aberration weights were randomly generated to have a total

wavefront RMS of zero, 0.2, 0.4, and 0.6 rad, with lower order
Zernike terms allowed to take on greater weights. This was
done to mimic common imaging scenarios where the magni-
tude of lower order aberrations is significantly greater than that
of higher order aberrations, such as imaging the human retina
[28,29]. The total wavefront RMS is defined as

σ �
�X

n
c2n

�
1∕2

: (27)

A total of 10 random wavefronts were generated at each
RMS, and OCT data were simulated for each wavefront.
The noise level was set to 50 dB peak SNR. Due to its con-
sistent performance across all orders and resilience to noise, the

Autoconvolution method Forward model method
Bd 05

Bd 04
Bd 03

B d 52
Bd 02

Fig. 5. Performance of the autoconvolution and forward model
methods at each Zernike mode for decreasing peak SNR. The forward
model method shows superior performance in noisy conditions.

Peak SNR (dB)

20 30 40 50
0

0.2

0.4

0.6

0.8

1

Sensitivity (Autoconvolution)

Cross-talk (Autoconvolution)

Sensitivity (Forward model)

Cross-talk (Forward model)

Fig. 6. Average sensitivity and cross talk versus peak SNR for the
autoconvolution and forward model methods. While the methods
have similar average sensitivity, the cross talk for the forward model
method is notably superior at low SNR.

(a) (b)

(c) (d)

Fig. 7. Measurement of multiple simultaneous aberrations using
the forward model method. (a)–(c) The applied and measured
Zernike weights are shown for a randomly generated wavefront at
0.2, 0.4, and 0.6 radians RMS, respectively. (d) Average wavefront
RMS measured over 10 randomly generated wavefronts. The
corresponding sensitivity to total wavefront RMS was 0.85.
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forward model method was used to estimate the applied
wavefronts.

Example wavefronts and the corresponding computational
measurements are shown in Fig. 7. As seen in Figs. 7(a)–7(c),
the measurement closely tracked the applied wavefront. For
each wavefront, the total RMS of the measured aberrations
was calculated. The average measured RMS across each set
of 10 wavefronts is shown in Fig. 7(d). The sensitivity was
0.85, calculated as the least squares slope of the total measured
RMS as a function of applied RMS.

As a demonstration of volumetric aberration measurement
and correction, a 3D OCT dataset was generated with 50 ran-
domly located point scatterers. The pupil aberrations were
given by a randomly generated wavefront of 0.6 rad total RMS.
The forward model method was used to estimate and correct
the aberrations throughout the imaging volume. Volume ren-
derings of the aberrated OCT data and CAO corrected data are
shown in Fig. 8(a), along with corresponding en face images
taken 150 μm below focus shown in Fig. 8(b). The CAO image
demonstrates correction of the point spread function with in-
creased signal amplitude and resolution, and 3.9 times im-
provement in image sharpness [see Eq. (21)]. While only
four points are resolved the OCT image, a previously obscured
fifth point is revealed following wavefront correction (white
arrow). The applied and measured aberration weights are given
in Fig. 8(c), showing the mean and standard deviation of the
wavefront measurement across all 50 scatterers. The average
sensitivity to the total wavefront RMS was 0.89, giving an
approximate Strehl ratio of 0.94 [30].

5. CONCLUSIONS

Using the proposed methods, aberrations can be both measured
and corrected computationally directly from the OCT data
without the use of hardware adaptive optics components.
Our methods were tested in simulation, and the performance
compares favorably to that of previously published wavefront
sensor measurements in optical microscopy. Based on its sim-
plicity, consistency, and robustness to noise, the forward model
method is recommended for use in future experiments.

The results presented here only considered pupil aberra-
tions. However, these methods could also be used to determine
the local aberrations introduced by the imaged sample.
This could provide aberration corrected images as well as a
3D aberration map, revealing the effect of the tissue on the
imaging beam. This is interesting from a scientific perspective,
since the mapping of optical aberrations can be used to opti-
mize imaging system parameters such as choice of optics or
scanning region. For biomedical applications, aberration
measurement could be used as a new form of image contrast
between tissue types that may otherwise appear similar under
OCT imaging. In general, where hardware wavefront measure-
ment has found useful application, CAO is a computational
alternative for simultaneous wavefront measurement and
correction.

APPENDIX A: TABLE OF ZERNIKE
POLYNOMIALS

A list of the Zernike polynomial indices used in this publication
is included in Table 1 to aid the reader. The polynomials
are indexed according to the ANSI Z80.28 standard [31].
The functions are given here in polar coordinates but can also

(a) (c)OCT CAO (b)

CAO

OCT

Fig. 8. Measurement and correction of multiple aberrations in a 3D imaging volume. (a) Volume rendering of aberrated (OCT) and corrected
(CAO) data. The dimensions of the volume are 128 μm × 128 μm × 640 μm. (b) En face images are taken from 150 μm below focus. Following
CAO, the point spread function is improved and a previously obscured fifth point is revealed (white arrow). (c) Applied and measured aberrations at
each point scatterer throughout the volume. The error bars correspond to the standard deviation across all 50 measurements. Zernike weights are in
radians.

Table 1. Zernike Polynomial Indices, RMSNormalization
Factors, and Common Names

n Zn�r;θ� RMS Name

2nd order
3 r2 sin�2θ�

ffiffiffi
6

p
astigmatism

4 2r2 − 1
ffiffiffi
3

p
defocus

5 r2 cos�2θ�
ffiffiffi
6

p
astigmatism

3rd order

6 r3 sin�3θ� 2
ffiffiffi
2

p
trefoil

7 �3r3 − 2r� sin�θ� 2
ffiffiffi
2

p
coma

8 �3r3 − 2r� cos�θ� 2
ffiffiffi
2

p
coma

9 r3 sin�3θ� 2
ffiffiffi
2

p
trefoil

4th order

10 r4 sin�4θ� ffiffiffiffiffi
10

p
quadrafoil

11 �4r4 − 3r2� sin�2θ� ffiffiffiffiffi
10

p
secondary astigmatism

12 6r4 − 6r2 � 1
ffiffiffi
5

p
spherical

13 �4r4 − 3r2� cos�2θ� ffiffiffiffiffi
10

p
secondary astigmatism

14 r4 cos�4θ� ffiffiffiffiffi
10

p
quatrefoil
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be written in rectangular coordinates [32]. Each polynomial
was normalized by its RMS to satisfy the conditionZ

1

0

Z
2π

0

Zn�r; θ�Zm�r; θ�rdrdθ∕
Z

1

0

Z
2π

0

rdrdθ � δnm:
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