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Abstract: In many optical imaging applications, it is necessary to overcome aberrations to 
obtain high-resolution images. Aberration correction can be performed by either physically 
modifying the optical wavefront using hardware components, or by modifying the wavefront 
during image reconstruction using computational imaging. Here we address a longstanding 
issue in computational imaging: photons that are not collected cannot be corrected. This 
severely restricts the applications of computational wavefront correction. Additionally, 
performance limitations of hardware wavefront correction leave many aberrations 
uncorrected. We combine hardware and computational correction to address the shortcomings 
of each method. Coherent optical backscattering data is collected using high-speed optical 
coherence tomography, with aberrations corrected at the time of acquisition using a wavefront 
sensor and deformable mirror to maximize photon collection. Remaining aberrations are 
corrected by digitally modifying the coherently-measured wavefront during imaging 
reconstruction. This strategy obtains high-resolution images with improved signal-to-noise 
ratio of in vivo human photoreceptor cells with more complete correction of ocular 
aberrations, and increased flexibility to image at multiple retinal depths, field locations, and 
time points. While our approach is not restricted to retinal imaging, this application is one of 
the most challenging for computational imaging due to the large aberrations of the dilated 
pupil, time-varying aberrations, and unavoidable eye motion. In contrast with previous 
computational imaging work, we have imaged single photoreceptors and their waveguide 
modes in fully dilated eyes with a single acquisition. Combined hardware and computational 
wavefront correction improves the image sharpness of existing adaptive optics systems, and 
broadens the potential applications of computational imaging methods. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Optical imaging is often limited by wavefront aberrations, which may be inherent to the 
imaging system itself or introduced by the imaged sample. By compensating for the 
wavefront error using adaptive optics, it is possible to acquire high resolution images even in 
the presence of aberrations [1–4]. Conventionally, this has been achieved using a wavefront 
sensor and deformable mirror to measure and correct the aberrated optical wavefront. We 
term this method hardware adaptive optics (HAO). 

HAO physically modifies the optical wavefront to allow tight focus of the imaging beam. 
This allows for high signal even in the presence of large aberrations. However, the HAO 
correction is optimized for a single depth within the sample, and thus, image quality is not 
optimal for other depth locations. The wavefront correction also suffers from limited 
sampling and inherent measurement and fitting errors, and is sensitive to system 
misalignment. Misalignment is particularly prevalent when acquiring data on living subjects 
due to involuntary head and eye motion and eye blinks. These effects can be reduced, but not 
eliminated. 

Previous attempts to improve HAO images have relied upon amplitude-based 
deconvolution [5,6]. These methods neglect the phase information and operate upon the 
amplitude or intensity image only. Small values in the optical transfer function lead to either 
signal loss or noise amplification, making these methods poorly suited for imaging in 
scattering samples. 
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Optical coherence tomography (OCT) is a broadband interferometric imaging method 
which measures coherently backscattered light, and can be combined with HAO for imaging 
samples that aberrate the wavefront [7–10]. By acquiring interferometric data using OCT, the 
complex wavefront is measured, and the pupil phase can be digitally adjusted to compensate 
for aberrations [11]. This is done by applying a phase-only filter in the spatial frequency 
domain and is analogous to the physical operation of a deformable mirror in adaptive optics. 
Therefore, we term this method computational adaptive optics (CAO). Using CAO, 
computational wavefront correction has been demonstrated for a variety of biological imaging 
applications [11–15]. 

With CAO, the image formation process can continue after data acquisition, and therefore 
the data does not need to be aberration free when acquired. This reduces the burden on HAO 
to provide optimal correction at the time of imaging and the need to maintain optimal sample 
alignment. Additionally, the aberration correction can be fine-tuned to each depth layer, field 
position, and time point of acquisition. However, because CAO does not physically modify 
the wavefront, any photons lost due to the presence of aberrations are not recovered using 
CAO. When the imaging beam is aberrated, the input signal strength is distributed away from 
the nominal focus. The back scattered photons are then rejected by the confocal detection of 
point-scanning OCT. This causes a drop in the detected OCT signal strength, leading to a loss 
in signal-to-noise ratio (SNR) that cannot be completely recovered using computational 
methods alone. 

One alternative to scanned OCT is full-field OCT which removes the confocal gate and 
allows collection of aberrated photons. Using CAO, full-field OCT has acquired high-
resolution images of the retina through a dilated pupil without hardware wavefront correction 
[16]. However, full-field OCT has stricter imaging speed requirements to achieve sufficient 
phase stability, lower diffraction-limited resolution, and reduced contrast due to the noise 
arising from scattered photons when compared to scanned OCT. 

We combine HAO and CAO together to address the shortcomings of each method and to 
demonstrate how their strengths can be integrated to provide more complete correction of 
wavefront aberrations. A high-speed OCT system equipped with HAO is used to acquire 3D, 
phase-stable interferometric data with high SNR. This data is then reconstructed using CAO 
to remove aberrations left uncorrected by HAO. Together, HAO + CAO achieves improved 
resolution when compared to HAO, and improved SNR when compared to CAO. 

This work is similar to, but distinct from point-spread function engineering [17], where 
hardware is used to introduce a known intensity profile onto the optical beam which can then 
be digitally corrected. For example, wavefront coding or airy beam imaging can create a 
distorted point-spread function which increases the depth-of-field [18–20]. Likewise, 
artificially introduced astigmatism can be used for depth localization of sparse signals 
[21,22]. In point-spread function engineering, the desired wavefront modification is known. 
In the case of combined HAO + CAO imaging, the wavefront aberrations are sample-induced, 
dynamic, and unknown. Rather than modify an ideal wavefront to suit some other purpose, 
the goal is to thoroughly correct the distorted wavefront for improved imaging capability, 
demonstrated here by in vivo retinal imaging. 

Imaging the living human retina requires imaging through the optics of the eye itself, 
which are severely aberrated when the pupil of the eye is large [23]. To obtain a high 
numerical aperture and therefore high resolution, the pupil must be dilated, resulting in strong 
ocular aberrations and photon loss. Because of this, previous demonstrations of in vivo CAO-
only imaging using scanned OCT were performed on undilated subjects [13,24,25]. 
Therefore, retinal imaging is an application well-suited for a combined hardware and 
computational approach. 
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2. Methods 

2.1 Adaptive optics imaging system 

A high-speed adaptive optics OCT system was used to physically correct aberrations and 
acquire retinal OCT data [26]. Like most HAO systems, the sample arm used mirrors instead 
of lenses to eliminate back reflections that may interfere with the wavefront measurement. 
Unfortunately, the use of spherical mirrors introduces strong astigmatism that must be 
compensated by placing some mirrors out-of-plane. The system was a unique design which 
used toroidal mirrors to allow for in-the-plane alignment without strong system aberrations, 
the details of which were previously published in Ref [27]. An updated version of the system 
published in Ref [26] was used for the experiments presented here. Key differences from the 
original design include the use of a single deformable mirror and four interleaved 
spectrometers. 

The HAO system consisted of a deformable mirror (DM 97, ALPAO) and a custom 
Shack-Hartmann wavefront sensor, constructed with a 20 x 20 lenslet array in front of a 
sCMOS camera (Neo, Andor). A superluminescent diode centered at 790 nm with 47 nm 
bandwidth was used for both imaging and wavefront sensing, giving an axial resolution in 
tissue ( 1.38n = ) of 4.7 µm. The pupil size was 6.67 mm at the eye, resulting in a theoretical 
diffraction limited transverse resolution of 2.4 µm. The spectral domain OCT system used 
four interleaved spectrometers operating at line rates of 250 kHz each, for an effective line 
rate of 1 MHz. All images were acquired at the 1 MHz rate. 

2.2 Human subject imaging 

Data was acquired from the right eyes of two healthy male subjects, ages 27 years and 26 
years. These are referred to as Subject 1 and Subject 2, respectively. The left eye was covered 
by a patch, and the right eye was dilated using 0.5% tropicamide. Imaging was performed at 
0.5°, 1°, 3.5°, 7.5°, and 12.5° temporal (T) to the foveal center. The OCT data was acquired 
with the HAO system running in closed loop feedback, and a real-time display was used to 
place the focus near the cone photoreceptors prior to data acquisition [28]. Due to the 
relatively high numerical aperture of the dilated pupil, only posterior retinal layers had 
sufficient SNR for observation. 

OCT data was acquired in bursts of 30 sequential volumes at 10 volumes per second, for a 
total acquisition time of 3 seconds. This acquisition scheme was standard for HAO to ensure 
that sufficient motion-free volumes were acquired for imaging of small features such as rods, 
and to avoid imaging during large motion artifacts such as saccades. This method was not 
altered for CAO and was sufficient to acquire many phase stable OCT volumes within a 
single burst. All procedures on the subjects adhered to the tenets of the Declaration of 
Helsinki and were approved by the Institutional Review Board of Indiana University. 

2.3 Phase stability 

Computational wavefront correction requires a stable phase relationship during the 
measurement of each location within the imaging volume. In a dynamic sample such as the 
human eye, there is significant motion which is largely overcome by using high imaging 
speeds. Although the 1 MHz line rate was sufficient to overcome much of the eye motion, it 
was important to measure the system stability due to the use of galvanometer scanning 
mirrors at such high frame rates and the fluctuations of the deformable mirror. This was 
analyzed using a model eye with the HAO system operating with and without closed-loop 
feedback. Repeated frames were acquired at the same location by fixing the position of the 
slow-axis scanning mirror. Complex conjugate multiplication was performed between 
consecutively acquired frames (along the temporal axis), and the result was averaged along 
both depth and the fast-scanning axis. This canceled out any transverse motion and measured 
purely axial motion, to which computational OCT is most sensitive. Following volume phase 
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Cone mosaic images were generated by a maximum projection of the inner segment/outer 
segment junction (IS/OS) and cone outer segment tip (COST) depth layers [10]. The rod 
mosaic image was taken directly from the rod outer segment tip (ROST) depth layer. Prior to 
extracting individual cell layers, the HAO and HAO + CAO data were co-registered to 
remove any translation introduced by CAO processing, and flattened to remove tip, tilt, and 
slowly-varying axial eye motion [31,32]. 

The optimal aberration correction filter was determined via stochastic optimization of the 
image sharpness over the first five Zernike orders, using the resilient backpropagation 
procedure outlined in [33]. The CAO phase filter extended to the maximum theoretical cutoff 
frequency of the confocal system, defined as two times the spatial frequency coverage of the 
6.67 mm pupil at the eye [34]. A single correction was used for the entire field-of-view, 
which is roughly half the size of the expected isoplanatic patch on the retina [35]. The image 
sharpness metric was calculated from the complex OCT signal ( , )S x y  as the sum of the 

squared intensity, 

 
2*

,

( , ) ( , ) .
x y

S x y S x y    (2) 

The CAO procedure was tested on the COST layer at 12.5°T in Subject 2 to determine the 
run time and image sharpness improvement for an increasing number of Zernike modes. The 
maximum Zernike mode was increased from 2nd to 10th order (excluding piston, tip, and tilt), 
and the optimization was run 10 times at each step. The optimization was performed on the 
300 x 300 pixel image using MATLAB 2015b on an Intel Core i7-6950X processor. 
Optimization up to 5th order (20th Zernike term) was determined to be a good balance between 
optimization time and image improvement, with an average runtime and sharpness 
improvement of 12 seconds and 42%, respectively. This was used as the default setting for 
processing other retinal data sets. 

3. Results and discussion 

Retinal data was acquired from living human subjects with fully dilated pupils using a high-
speed adaptive optics OCT system. Representative cone photoreceptor mosaics for each 
possible combination of HAO and CAO are given in Fig. 2, along with the peak SNR in each 
case. Each image shows the OCT amplitude presented on a common grayscale normalized to 
the HAO + CAO image. The peak SNR was calculated as 

 

2*

peak 10 2
noise

max ( , ) ( , )
SNR 10log .

S x y S x y

σ

    =
 
 

 (3) 

Images acquired without HAO (Fig. 2(a)) correspond to a fixed defocus applied to the 
deformable mirror based upon the subject's eyeglass prescription (−2 diopter). In the no-AO 
case, the strong ocular aberrations lead to poor SNR and poor resolution. Note that in many 
subjects, the SNR without adaptive optics may be so low that no photoreceptors are visible. 
CAO recovers the diffraction-limited resolution, and the peak SNR increases due to higher 
peak signal of the corrected point-spread function (PSF). However, the total signal collected 
remains constant before and after computational correction. 

The greatest improvement in SNR comes from the addition of HAO (Fig. 2(b)), which 
increased the peak signal by nearly an order of magnitude over the no-AO case. Still, the 
point-spread function remains somewhat aberrated. The HAO + CAO image shows both 
improved resolution and the greatest increase in SNR when compared to the no-AO image, a 
12.7 dB increase. This demonstrates the synergy between the hardware and computational 
wavefront corrections. 
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spatial frequencies corresponding to the 6.67 mm physical pupil, and is given as a fraction of 
the central wavelength, λ. Note that there is a non-trivial relationship between residual 
aberration RMS and sharpness improvement, as each aberration mode has a unique influence 
upon the value of the metric [46]. 

The impact of ocular aberrations typically increases with retinal eccentricity, placing a 
greater burden on the HAO system, which could be shared by CAO. There is also increased 
difficultly of obtaining optimal alignment of the subject pupil with the HAO system at larger 
retinal eccentricities. The results in Table 1 follow that general trend, showing more 
improvement in the image sharpness metric with increasing eccentricity. The image sharpness 
improvement was calculated as the increase in the sharpness metric defined in Eq. (2), with 
the modification that the metric was normalized by the sum of the pixel intensities to account 
for any small variations in image power resulting from the computational correction. 

Table 1. Residual wavefront RMS as a fraction of wavelength (λ) and image sharpness 
improvement (%) 

Subject 1 
 0.5°T 1°T 3.5°T 7.5°T 12.5°T 

IS/OS 0.16 λ 0.11 λ 0.27 λ 0.17 λ 0.17 λ 
(9.7%) (28.3%) (36.6%) (45.3%) (45.5%) 

COST 0.14 λ 0.12 λ 0.16 λ 0.12 λ 0.14 λ 
 (6.2%) (17.4%) (36.7%) (23.5%) (41.2%) 

 
Subject 2 

 0.5°T 1°T 3.5°T 7.5°T 12.5°T 
IS/OS 0.15 λ 0.16 λ 0.14 λ 0.13 λ 0.22 λ 

(8.0%) (13.1%) (37.8%) (4.3%) (75.0%) 

COST 0.20 λ 0.12 λ 0.18λ 0.12 λ 0.16λ 
(6.3%) (6.1%) (14.9%) (7.4%) (41.8%) 

 
These results were achieved by computationally correcting up to the 20th Zernike mode, 

while the HAO system corrected up to 70 singular-value modes. Therefore, the residual 
aberrations do not result from a limited number of modes corrected by HAO, but from the 
accuracy with which the modes are measured and corrected. Calibration error, fitting error, 
measurement error, and bandwidth error all contribute to the presence of residual  
aberrations [47]. The computed pupil also has many more adjustable elements than the 
number of actuators on the deformable mirror used in this study, which may partially explain 
the improvement gained from CAO. 

The term computed pupil refers to the spatial frequency coverage of the OCT system 
accessed by taking the 2D transverse Fourier transform of the OCT signal, as illustrated in 
Fig. 1(a). The computed pupil is circular and extends to the cutoff frequency of the imaging 
system. Within the computed pupil, the phase of each pixel is digitally modified using 
double-precision floating-point numbers, making the pixels equivalent to piston-only 
actuators with nearly infinite stroke. Pixels outside the computed pupil are left unmodified. 
The number of pixels across the computed pupil is termed the number of computational 
actuators. 

For the imaging protocol used here, the en face image size was 300 x 300 pixels originally 
acquired with 0.4 x 0.5 µm spacing and a 6.67 mm physical pupil. This resulted in 14,111 
piston-only computational actuators within the computed pupil. For comparison, the Alpao 
DM 97 used in this study had 97 discrete actuators with approximately Gaussian influence 
functions. For a piston-only wavefront corrector to achieve equivalent performance to a 
corrector with a Gaussian influence function, the required number of actuators is predicted to 
increase by a factor of 10 to 40 depending upon pupil size, among other factors [23]. In this 
study, the piston-only computed pupil had approximately 150 times more actuators than the 
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stability. Additionally, full integration of HAO and CAO for clinical use would require a near 
real-time implementation of the automated CAO optimization procedure. Manual CAO 
correction has previously been implemented for real-time display using a graphics processing 
unit [50]. It is anticipated that parallelization will enable optimization of multiple depth layers 
simultaneously to produce HAO + CAO images at an acceptable speed for clinical use. 

This combined hardware and computational approach to wavefront correction is expected 
to be useful in other applications outside of retinal imaging. HAO for optical microscopy with 
direct wavefront sensing is often inaccurate due to poor performance of the wavefront sensor 
in thick samples [4,51]. The aberrated image acquired using direct wavefront sensing could 
be used as a high-SNR starting point for further computational correction. Sensorless adaptive 
optics, in which a deformable mirror is adjusted to maximize an appropriate image sharpness 
metric, must optimize the mirror shape for each scan point at the time of acquisition 
[10,46,52]. Therefore, the image acquisition time is dramatically increased when obtaining an 
optimal wavefront correction. Using CAO, the sensorless AO correction does not need to be 
optimal, since uncorrected aberrations can be removed post-acquisition. This could 
dramatically reduce the acquisition time for sensorless AO, enabling imaging of more 
dynamic samples. 
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