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Abstract: Histochemistry is a microscopy-based technology widely used to visualize the 
molecular distribution in biological tissue. Recent developments in label-free optical imaging 
has demonstrated the potential to replace the conventional histochemical labels/markers 
(fluorescent antibodies, organic dyes, nucleic acid probes, and other contrast agents) with 
diverse optical interactions to generate histochemical contrasts, allowing “virtual” 
histochemistry in three spatial dimensions without preparing a microscope slide (i.e. labor-
intensive sample preparation). However, the histochemical information in a label-free optical 
image has often been rather limited due to the difficulty in simultaneously generating multiple 
histochemical contrasts with strict spatial co-registration. Here, in the first part (Part I) of this 
two-part series study, we develop a technique of slide-free virtual histochemistry based on 
label-free multimodal multiphoton microscopy, and simultaneously generate up to four 
histochemical contrasts from in vivo animal and ex vivo human tissue. To enable this 
functionality, we construct and demonstrate a robust fiber-based laser source for clinical 
translation and phenotype a wide variety of vital cells in unperturbed mammary tissue. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

A long-sought goal in biomedical engineering is to perform tissue molecular imaging in a 
clinical setting, in real-time, in vivo, without stains, without slides, and in three-dimensions at 
optical resolutions. To this purpose, histochemical imaging contrasts have been generated 
from fresh unlabeled tissue specimens by varying the incident light that interacts with the 
specimen, rather than by treating (e.g., histologically processing and labeling) the specimen 
and illuminating it with fixed light. Versatile approaches of this type of imaging include 
tuning the optical frequency difference in stimulated Raman scattering microscopy (SRS) to 
obtain molecular vibration contrasts [1], varying the absorption wavelength in photoacoustic 
microscopy to obtain absorption contrasts [2], and programming light excitation and detection 
in multimodal multiphoton microscopy to obtain diverse nonlinear optical contrasts [3]. 
However, for fast in vivo imaging, only one contrast (black-and-white image) is generated in 
one raster scan of the specimen, typically. It is possible to obtain additional types of contrast 
by scanning the same tissue section with different conditions of light excitation and/or 
detection, but this rescanning does not guarantee the co-localization of the two contrasts 
in  in  vivo imaging and increases the risk of sample photo-damage. Temporal multiplexing of 
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different excitation conditions at each imaging pixel has been implemented for both SRS [4] 
and photoacoustic microscopy (e.g. in oxygen-metabolic vasculature imaging [5]) to 
simultaneously acquire two spectroscopic contrasts in one scan. This methodology guarantees 
co-localization of image data, but for imaging at a given signal-to-noise ratio, retains the risk 
of sample photo-damage. 

With no such risk, spectral multiplexing of different detection channels has been realized 
in simultaneous multimodal multiphoton imaging of plant cells at 1230-nm excitation [6]. We 
envision that this technique should allow multicolor “virtual” histochemistry of animal/human 
tissue at 1110-nm excitation via two-photon excited auto-fluorescence (2PAF, yellow), three-
photon excited auto-fluorescence (3PAF, cyan), second-harmonic generation (SHG, green), 
and third-harmonic generation (THG, magenta) (Fig. 1(a)). The shift of the excitation 
wavelength from 1230-nm to 1110-nm allows for spectrally-separated detection of the four 
colored contrasts, in which the 3PAF and 2PAF contrasts correspond, respectively, to the 
emission bands of NADH and FAD with minimum spectral overlap (Fig. 1(b), upper panel) 
[7–9]. A recent study demonstrated the power of simultaneous label-free autofluorescence-
multiharmonic (SLAM) microscopy for intravital imaging based on a solid-state laser-
induced fiber supercontinuum [8]. To further the clinical applicability of this methodology, 
this paper leverages the recent advances in the fiber-laser industry by building the SLAM 
imaging platform on a fiber-laser-induced supercontinuum for better stability and ease of 
operation. Further, the applicability of this new imaging platform is evaluated with a broad 
array of biological specimens. 

This paper forms the first part (Part I) of our two-part series study on the envisioned label-
free multiphoton histochemical imaging, with a focus on the technological development of 
slide-free virtual histochemistry via nonlinear optics in both free-space and fiber 
configuration. The second part (Part II) [10] of this two-part series study will focus on the 
application and unique capability of the developed slide-free virtual histochemistry to detect 
field cancerization in peri-tumoral fields. 

2. Laser and microscope 

The desired excitation band centered at 1110-nm is not directly available from femtosecond 
fiber lasers with limited wavelength tunability [11]. We therefore sought to replace the solid-
state laser with a femtosecond fiber laser as the master laser for coherent fiber 
supercontinuum generation [12,13], which has been employed in multiphoton imaging of 
human skin [14] (Table 1). All these prior studies chose to custom build the master fiber laser. 
It is unclear whether this choice is due to the noise or decoherence mechanism [15] that might 
be associated widely available commercial femtosecond fiber lasers. Taking the hint from the 
master fiber laser that was custom built to generate near transform-limited pulses [12,13], we 
selected a commercial laser that produced a small time-bandwidth product (Table 1). 

This industrial fiber laser (Satsuma, Amplitude Systemes) is widely used in laser-assisted 
in situ keratomileusis (LASIK) eye surgery [16], but has not been actively pursued for 
biomedical imaging. The free-space coupling of 2.3 W laser power to the fiber generated a 
supercontinuum output of 1.8 W (Fig. 1(c)). The multiphoton microscope in this study largely 
followed the setup reported in a prior study [8]. The band of 1110 ± 30 nm in the 
supercontinuum was spectrally selected by a pulse shaper (MIIPS Box640, Biophotonics 
Solutions) with an average output power of 50 mW. Then the near-transform-limited pulses 
~35 fs (FWHM) were raster scanned by a galvanometer mirror pair (6215H, Cambridge 
Technology) (Fig. 1(a), upper panel). 

An objective with high UV transmission (UAPON 40XW340, N.A. 1.15, Olympus) was 
used to produce a field-of-view of 350 × 350 µm2. The loss along the excitation beam path 
resulted in an average focusing power of ~20 mW on the tissue (well below the ANSI 
standard of ~100 mW at this wavelength). The reflected 4-channel multiphoton signals were 
then spectrally separated by appropriate dichroic mirrors and optical filters (Semrock, Inc.) 
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(Fig. 1(a), upper panel) and simultaneously collected by 4 photomultipliers (H7421-40, 
Hamamatsu). By directly comparing the pulse-shaped fiber supercontinuum generated from 
this fiber laser with that from a similar solid-state laser (femtoTrain, Spectra-Physics Inc.) 
(Table 1) (Fig. 1(c)), we obtained comparable imaging performance from the same sample. 
The additional noise or decoherence associated with the fiber laser-induced supercontinuum, 
if present, has no appreciable effect on our tetra-modal imaging. Also, the feasibility to 
simultaneously image NADH and FAD by 1110-nm excitation via the 3PAF and 2PAF 
detection channels was demonstrated by imaging the NADH and FAD solutions (Fig. 1(b), 
lower panel). 

There are several practical benefits associated with this replacement of the master laser. 
First, the bulky, water cooled, and frequently unstable solid-state laser is replaced with a 
compact air-cooled robust fiber laser suitable for portable applications [1]. Second, the 
deterministic supercontinuum generation in the normal dispersion regime of the photonic 
crystal fiber, and subsequent pulse shaping, are both passive optical processes (in comparison 
to the active processes of lasing) stable against mechanical and thermal disturbance [15]. This 
stability, along with the excellent beam pointing stability of the fiber laser, enables long-term 
stable operation (hundreds of hours over 6 months) of the supercontinuum source free of 
realignment or service. Third, daily operation of the supercontinuum source resembles its 
turn-key master fiber laser, allowing a user with minimum laser training to begin imaging 
after only a 5-min warmup. 

Table 1. Some coherent fiber supercontinuum sources for general multiphoton 
microscopy. 

Reference in text 3 14 This study 
Tunable λ (nm) 770-1280  1030-1215 900-1180  900-1180 

Pulse width τ  (fs) ~25  50 ~25 ~25 
Average power (mW) 10-30 ~500 10-100 10-100 

Repetition rate f (MHz) 80 55 10 10 
Peak-power factor (fτ)-1 5.0×105 3.6×105 4.0×106 4.0×106 

Master laser Solid-state 
Yb:KGW laser 

Custom Yb:fiber 
laser 

Solid-state 
Yb:KGW laser 

Commercial 
Yb:fiber laser  

Nonlinear fiber core size (µm) 2.3 8 15 15 
Dispersion compensation 

module 
Programmable 
pulse shaper 

Grating compressor Programmable 
pulse shaper 

Programmable 
pulse shaper 

Access to wavelengths simultaneous sequential simultaneous simultaneous 
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of  55  mg/kg. The first injection was performed on the left abdominal side, and a second 
injection was performed one week later on the right abdominal side. The lesions were first 
palpable from the abdominal surface about 4 weeks after the second injection, and were 
allowed to grow up to 1.5 cm afterward. For the control group, an equal amount of saline was 
injected at each time point to account for plausible effects from the injection. Small surgeries 
were performed to expose the mammary glands of the rats from both groups 6-16 weeks after 
the second injection. The rats underwent in vivo imaging of the mammary tissue and were 
then euthanized. 

Human breast cancer tissue (from tumor resection surgery) and normal tissue (from breast 
reduction surgery) were obtained under a protocol approved by the Institutional Review 
Boards at the University of Illinois at Urbana-Champaign and Carle Foundation Hospital. The 
permission for investigational use of all tissue specimens was obtained from subjects who 
preoperatively signed an informed consent. The tissue specimens were stored in saline-filled 
conical tubes and transported on ice for imaging within 12 hours after surgery. 

3.2 In vivo animal imaging 

An experimental rat with palpable lesion(s) or a control rat was anesthetized with isoflurane, 
and a small incision was made in the abdominal skin to expose a tumor (~1 cm) or normal 
mammary gland. The surrounding skin was flipped on a microscope coverslip so that the 
field-of-view could be arbitrarily placed at the visually detected lesion site. The rat itself was 
positioned on a three-dimensional motorized piezoelectric stage to allow depth-resolved 
imaging and large-field imaging with a mosaic of high-resolution fields-of-view. The imaging 
focal plane was placed 5-100 µm below the sample surface. Anesthesia was maintained 
throughout the imaging session while the rat was kept warm at physiologic temperature with a 
heating pad and blanket. The galvanometer mirror-based scanning along with the unique 
optical excitation allowed acquisition of multi-contrast multiphoton images (512 × 512 
pixelated frame with 350 × 350 µm2 standard field-of-view) at a frame rate of 0.5 Hz, 
corresponding to a pixel dwell time of ~8 µs. The full “field-of-view” image presented in the 
figures were a result of mosaic acquisition (3x3, or 5x5 depending on the final image size). 
Raw data from the photomultipliers were used to produce all images without additional 
processing such as deconvolution or maximum intensity projection. This in vivo imaging of 
rat mammary tissue was also employed in ex vivo imaging of human breast tissue without the 
in vivo aspects. 

4. Results 

4.1 Characterizing slide-free virtual histochemistry 

To demonstrate that our fiber laser-based source retained the capability of the programmable 
light multiphoton imaging [3], we first performed the tetra-modal imaging on ex vivo mouse 
kidney and readily differentiated the NADH-rich (cyan-colored) epithelial cells from FAD-
rich (yellow-colored) epithelial cells in kidney tubules and collecting ducts (Fig. 1(d), left two 
panels) [17]. We then reprogramed the excitation to generate 30-fs 920-nm pulses [3], and 
conducted FAD imaging through the SHG detection channel of the tetra-modal imaging, 
according to the established excitation/detection wavelengths of this endogenous compound 
[7]. As expected, only the FAD-rich epithelial cells were observed after the reprogramming 
(Fig. 1(d), right panel). Similarly, we first performed the tetra-modal imaging of ex vivo 
human mammary tissue (control) and easily differentiated the 2PAF-visible elastin fibers 
from SHG-visible collagen fibers in the extracellular matrix (Fig. 1(e), left two panels). We 
then carried out the same reprogramming of excitation and selectively imaged these elastin 
fibers through the SHG detection channel of the tetra-modal imaging (Fig. 1(e), right panel). 
Thus, endogenous elastin fibers can be revealed by 2PAF imaging using the 
excitation/detection wavelengths of (720/440 nm) [9], (880/515 nm) [18], (940/562 nm) [3], 
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Table 2. Classified vital stromal or tumor cells in mammary tissue with distinct optical 
phenotypes. 

Cell type Yellow 
cytoplasm 

Yellow 
nucleus 

Cyan 
cytoplasm 

Cyan 
nucleus 

Magenta 
cytoplasm 

Magenta 
nucleus 

Cell shape 

Rat and human normal cells 
Fibroblast 1 0 0 0 0 0 spindle
Erythrocyte 1 0 0 0 0-1 0 round
immune cell 1 1 0 0 0 1 0 round-like
Yellow-colored 
stromal cell 

1 0 0 0 0 0 amoeboid

Rat and human cancer-associated cells 
Tumor cells 0-1 0-1 0-1 0-1 0-1 0-1 diverse
Magenta-colored 
stromal cell 

0 0 0 0 1 0 amoeboid

Cyan-colored 
stromal cell 

0 0 1 0 0 0 amoeboid

Note: 1 – visible, 0 – not visible. 

4.2 Phenotyping vital cells from rat to human 

We then conducted systematic in vivo tetra-modal imaging of various cells in rat mammary 
tissue under the same excitation conditions and at similar imaging depths (20-40 µm). The 
imaging revealed locations in the normal mammary tissue of a control rat, or in the tumor 
center, vicinity of the tumor boundary or margin, and in the peri-tumoral field of specimens 
from a pre-clinical carcinogen-injected mammary tumor rat model. All tetra-modal images 
were directly comparable after plotting the four pseudo-color contrasts of magenta, cyan, 
green, and yellow with the same set of dynamic ranges. A distinct cell phenotype was 
recognized by the visibility of yellow, cyan, and magenta optical markers from both the 
nucleus and cytoplasm, termed as the optical phenotype (Table 2). Comparison of histological 
images of the same sample has been provided as Fig. 2 in Part II of this study [10]. 
Combining the optical phenotype with the local context of the extracellular matrix, we 
recognized a wide variety of cells including stromal cells or fibroblasts, erythrocytes, immune 
cells, endothelial cells, and tumor cells within the authentic tumor microenvironment (Fig. 3). 
All these cells observed in vivo were also observed with the same optical phenotypes in fresh 
ex vivo mammary tissue  <12  hrs after resection, allowing a time window for consistent and 
comparative imaging and analysis. The endothelial cells were recognized by their unique 
elongated shape as well as their context in which they were well-aligned along the direction 
of the vessel, which highly correlates with their typical histologic morphology. The different 
optical signatures could be attributed to their active metabolic status. Endothelial cells with 
cyan outlines indicated high NADH concentrations, which are associated with glycolysis as 
well as hypoxia. Endothelial cells with strong THG signals indicated the local presence of 
water around the cells [25]. 

Similar phenotypical heterogeneity is found in human breast tissue <12 hrs after resection 
(Figs. 3(o), 3(s)), with heterogeneous carcinogenesis similar to the animal model (Figs. 4, 5). 
Unique correspondences can be established between some rat and human cells according to 
their similar optical phenotypes and organization of their extracellular matrices (bidirectional 
arrows; Fig. 3). The magenta-yellow-colored rat immune cells with a round-like shape 
(arrowhead; Fig. 3(a)) have been validated by their wide presence in lymph nodes, and may 
be correlated with similar human cells in ex vivo tissue (arrowhead; Fig. 3(p)) that could be 
difficult to image in vivo. As expected, in both rat and human specimens, abundant yellow-
colored normal stromal cells (Figs. 3(f), 3(k)) are widely present in the stromal regions of 
control and cancer-associated specimens (e.g., see Visualization 1 corresponding to Fig. 3(b)). 
However, the unique presence of cyan- or magenta-colored cancer-associated cells in the 
latter distinguishes a tumorous stroma (Figs. 3(h), 3(m)) from a normal stroma (Figs. 3(f), 
3(k)). Our cell phenotyping cannot only differentiate normal and cancer-associated stroma 
and mammary ducts, but also normal (or angiogenic) and cancer-associated blood vessels. In 
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important biological implications (Visualizations 1-4), which are not routinely available from 
conventional histochemistry due to the additional time needed for serial sectioning and three-
dimensional reconstruction of digitized slide images. It is to be noted that the 2PAF channel is 
not entirely specific to FAD, as multiple endogenous fluorophores (e.g. lipofuscin and 
porphyrin) share similar spectral characteristics in the spectral window of 600-650 nm [26]. It 
is by the combination of the 2PAF signal intensity and the cellular morphology, as well as the 
microenvironmental context, that we assigned the 2PAF channel largely to FAD, and 
subsequently analyzed the optical redox ratio for the identified cells. With the multimodal 
optical signatures collected with this system, there will likely be a continuum of values that 
represent a continuum of metabolic and molecular states. Along with the morphological 
features, these will combine to form the “optical phenotypes” we observe. Further 
investigations will be performed in the future to systematically establish the link between the 
optical phenotypes and different cell types. The focus areas of this paper are to demonstrate 
the clinical potential of our proposed imaging platform, to seek clues on the underlying 
carcinogenesis, and to reveal potential diagnostic markers. 

Cahill et al developed another type of virtual H&E histology via high-speed multiphoton 
imaging, which demonstrated strong potential for margin assessment for breast cancer with 
the aid of stains [27]. In contrast, the system proposed in this work compromised imaging 
speed (pixel dwelling time 5-20 µs) for label-free molecular profiling capability and 
highlights stain-free, slide-free, 3D, structural and functional imaging of cells and cellular 
dynamics in the authentic microenvironment. Although the relatively small fields-of-view 
make full tissue/margin assessment impractical, the high-dimensional molecular and 
functional changes revealed in the tumor micro- and macro-environments demonstrate the 
importance and the feasibility of characterizing the peri-tumor microenvironment for the 
underlying carcinogenesis as well as for potential diagnostic markers. The advantage of this 
system over existing label-free multimodal multiphoton microscopy systems is that it enables 
simultaneous and efficient excitation and detection of auto-fluorescence and harmonic 
generation from a vast array of cellular and stromal components in living tissue by using a 
single-excitation fiber-based source. We anticipate this technology and methodology will be 
an attractive complementary approach to existing clinical tissue assessment methods thanks to 
its label-free nature, technical simplicity, real-time functionality, versatility, and rich 
molecular/metabolic content [8]. 

Our demonstrated slide-free virtual histochemistry also complements the label-free 
histochemical imaging by SRS microscopy [1,4] or photoacoustic microscopy [2,5], which 
may achieve similar cell phenotyping by rapidly tuning the molecular vibration frequency or 
absorptive wavelength during the imaging. Our technique is based on well-established 
multiphoton microscopy with a long history of development. The compatibility of our 
technique with commercial multiphoton microscopy (Fig. 1(a)) may enable its more 
widespread use by simply replacing the standard Ti:sapphire laser in the microscope with our 
fiber laser-induced supercontinuum source. The latter is compact, reliable, and suitable for 
users without extensive laser training. The histochemical contrasts of the tetra-modal imaging 
(Fig. 1(a), lower panel) using 1110-nm single-band excitation can be expanded by 
reprogramming the fiber laser-induced supercontinuum to generate additional tailored 
histochemical contrasts [3]. Thus, we believe the demonstrated slide-free virtual 
histochemistry in this paper will provide an attractive way to conduct clinical histochemistry 
in comparison to various alternative techniques. As a prototypical demonstration, in the 
second part (Part II) of this two-part series study, we show how this slide-free virtual 
histochemistry is used to detect field cancerization in peri-tumoral fields [10]. 
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