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Abstract: Tumor-adjacent “normal” tissue constitutes a peri-tumoral field that affects early 
cancer detection, risk assessment, surgical decision, and postoperative surveillance. Modern 
genetic analysis has revealed valuable information from this field, but without the spatial 
resolution of optical microscopy to understand the vital microenvironments that surround 
individual cells. Rapidly advanced optical imaging techniques free of labor-intensive sample 
preparation, despite great promise to perform slide-free imaging of cell structure and shift the 
histology-centered cancer diagnostic paradigm, have lacked compatible and complementary 
histochemical imaging of cell function or phenotype to interrogate the peri-tumoral field. In 
the first part (Part I) of this two-part series study, we developed a technique of slide-free 
virtual histochemistry to phenotype various cells in in vivo animal and ex vivo human tissue. 
Here, in the second part (Part II) of this two-part series study, we employ this technique to 
examine various peri-tumoral fields and produce the volumetric histochemical evidence of 
field cancerization consistent with the structural changes at larger spatial scales. We also link 
the field cancerization with cancer dormancy in a significant portion of breast cancer patients. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Standard hematoxylin-and-eosin histology (H&E) and subsequent immunohistochemistry 
(IHC) in preoperative diagnosis of small biopsies and postoperative prognosis or surveillance 
of tissue samples, along with fast frozen section analysis (FSA) of surgical specimens during 
intraoperative assessment, form the gold standard for cancer diagnostic management that has 
not undergone a paradigmatic shift since 1950s. Recently, a wave of novel optical imaging 
technologies have emerged as volumetric alternatives [1–6] (Table 1) to typically two-
dimensional-based H&E and FSA, and have been used to directly visualize fresh or formalin-
fixed tissue in a digital form without labor-intensive (and artifact-prone) sample preparation 
on an H&E (or FSA) microscope slide [7]. The digital image data can be converted into 
virtual H&E images understandable by pathologists, which structurally highlight cell nuclei 
from the cytoplasm and the extracellular matrix as if the images were acquired by standard 
H&E [1–4]. The resulting slide-free virtual H&E imaging (SF-vH&E) appears non-
perturbative to the sample, even with external fluorescent labeling [1,3], and may thus 
conserve the valuable tissue specimen as a resource for subsequent molecular/genetic analysis 
and future use [2]. Additional advantages associated with volumetric imaging [7] and label-

Vol. 9, No. 11 | 1 Nov 2018 | BIOMEDICAL OPTICS EXPRESS 5253 

#332413 https://doi.org/10.1364/BOE.9.005253 
Journal © 2018 Received 29 May 2018; revised 16 Aug 2018; accepted 13 Sep 2018; published 5 Oct 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.005253&domain=pdf&date_stamp=2018-10-05


free intraoperative imaging in situ (in vivo inside the surgical cavity without removing the 
tissue) [8] reinforce the view that this paradigmatic shift is emergent [9]. 

However, remaining obstacles in both the non-intraoperative (preoperative or 
postoperative) assessment and intraoperative assessment must be overcome to enable a full 
paradigmatic shift. Outside of the intraoperative setting, imaging techniques for slide-free 
stain-free functional/metabolic assessment are currently lacking. Without this imaging, the 
usefulness of SF-vH&E would be considerably limited, e.g., to fast but rudimentary cancer 
diagnosis or determining adequacy of biopsy sampling [1]. If conventional IHC or tissue-
clearing-assisted volumetric IHC imaging [10] (Table 1) is required to follow SF-vH&E, the 
exact limitation of histology (labor-intensive sample/slide preparation) that SF-vH&E has 
avoided would be largely retained. In the intraoperative assessment, the benefit to replace 
FSA with faster SF-vH&E is compromised by a lack of information about the peri-tumoral 
field with field cancerization [11–14], which may define surgical tumor margins differently 
from sporadic tumorigenesis. Specifically, a negative surgical margin validated by either FSA 
or SF-vH&E may not prevent the local recurrence of a second field tumor in an unresected 
cancerized field [12]. Although it is possible to detect field cancerization in a peri-tumoral 
field by SF-vH&E, just like Slaughter and associates did in 1953 by H&E [11], the associated 
interobserver variability to discern subtle precancerous morphologies (hyperplasia, 
metaplasia, dysplasia, etc.) has fundamentally limited this practice [13,14]. There is a need for 
a quantitative imaging technique that could objectively assess the metabolic and structural 
properties of the complex microenvironment. 

It is then clear that in order to enable a full paradigmatic shift, a slide-free histochemical 
imaging technique free of labor-intensive sample preparation is needed to phenotype not only 
the primary tumor cells or tumor-associated cells for prognosis, but also other cells in the 
surrounding peri-tumoral field for detecting field cancerization. The definition (detection) of 
field cancerization by cell phenotypical changes has gained recognition over the more 
conventional definition (detection) by cell genetic or epigenetic alterations, due to the 
challenge to distinguish cancerized lineages against abundant mutant lineages [14]. Also, 
volumetric imaging is preferred to obtain spatial information, which is absent from genetic 
analysis, to discern cell niches, vasculature, and layer/duct formations [10]. 

In the first part (Part I) [15] of this two-part series study, we demonstrated a technique of 
label-free tetra-modal multiphoton microscopy for slide-free volumetric histochemical 
imaging (i.e. slide-free virtual histochemistry) compatible with label-free SF-vH&E (Table 
1). This technique has no labeling-associated disadvantages [9], and can in principle realize in 
situ intraoperative imaging [8]. Here, in the second part (Part II) of this two-part series study, 
we demonstrate the diagnostic value of this technique in breast cancer not only for the 
primary tumor but also for the peri-tumoral field that has not routinely provided imaging-
based diagnostic value previously. 
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Table 2. Classified vital cells in mammary tissue with distinct optical phenotypes. 

Cell type Yellow 

cytoplasm 
Yellow 
nucleus 

Cyan
cytoplasm 

Cyan 
nucleus 

Magenta 
cytoplasm 

Magenta 

nucleus 
Cell shape 

Rat and human normal cells 
Fibroblast 1 0 0 0 0 0 spindle  
Adipocyte 1 0 0 0 0 0 crescent 
Erythrocyte 1 0 0 0 0-1 0 round  
Immune cell 1 1 0 0 0 1 0 round-like 
Yellow-colored 
stromal cell 

1 0 0 0 0 0 amoeboid  

Rat and human cancer-associated cells 
Tumor cells 0-1 0-1 0-1 0-1 0-1 0-1 diverse 
Magenta-colored 
stromal cell 

0 0 0 0 1 0 amoeboid 

Cyan-colored 
stromal cell 

0 0 1 0 0 0 amoeboid 

Rat cells specific to cyan-colored field cancerization (2 out of 16 carcinogen-injected rats) 
Tumor cell 0 0-1 0 1 0 0 round-like 
Mesenchymal cell 0 0 0 1 0 0 elongated 
Endothelial cell 0 0 0 1 0 0 elongated 
Luminal epithelial  0 0 0 1 0 0 round-like  
Huam cells specific to magenta-colored field cancerization (4 out of 12 breast cancer patients) 
Tumor cell 0-1 0 0 0 1 0 round-like 
Endothelial cell 0 0 0 0 1 0 elongated 
Luminal epithelial 0 0 0 0 1 0  
Myoepithelial  0 0 0 0 1 0 elongated 

3.2 Detecting field cancerization in the peri-tumoral field 

In our breast cancer rat model, we frequently observed macroscopic (~1 cm) multifocal 
tumors by gross examination. A natural question arises whether grossly invisible microscopic 
(<1 mm) tumor foci, often termed as lesions, patches, and clusters, occur independently as the 
result of field cancerization [12–14]. According to the classical paper by Slaughter and 
associates [11], field cancerization in breast cancer can be characterized by three unique 
structures (Fig. 1): (i) emergence of both macroscopic and microscopic tumor foci in a field 
of precancerous tissue with abnormality of hyperplasia, metaplasia, or dysplasia; (ii) growth 
of multiple separate (independent) microscopic foci of DCIS and/or invasive breast cancer 
(IBC) near grossly visible tumor boundary or surgical margin; and (iii) coalescence of 
multiple (contiguous) tumor foci at the tumor center. 

To answer this question, we identified a carcinogen-injected rat with macroscopic 
multifocal tumors, and performed wide-field (~2 mm2 with stitched adjacent high-resolution 
field-of-views collected by scanning the specimen with a mechanical stage) tetra-modal 
imaging on one of them near a grossly detected tumor boundary (Fig. 4(a)), at the tumor 
center (Fig. 4(b)), and in the more remote peri-tumoral field (Fig. 4(c)). Noticeably, two 
separate egg-shaped microscopic (~300 µm) tumor foci emerge in one field of view, with 
similar tumor cells visible by their cyan-colored nuclei (Fig. 4(a)). Also, similar cyan-colored 
nuclei are found inside several mammary ducts in the adjacent peri-tumoral field 
(arrowheads, Fig. 4(a)), revealing the cancer-associated rat mammary epithelium (Fig. 3(c) 
vs. Fig. 3(h)) that appears normal or precancerous (hyperplasia, metaplasia, or dysplasia) by 
H&E histology (Fig. 4(a), inset) but could have suffered genetic alterations [17]. Moreover, 
the imaging site near the tumor center exhibits the apparent coalescence of two larger (~1 
mm) tumor foci (Fig. 4(b)). Thus, all three unique structures of field cancerization are present 
and imaged in this rat tumor. 
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another carcinogen-injected rat exhibits a similar tumor microenvironment and peri-tumoral 
field (Fig. 4(d)), but no cyan-colored field cancerization is present to expand the 
corresponding phenotype of tumor cells with cyan-colored cytoplasm (box 4, Fig. 4(d)). This 
phenotype of tumor cells reproduces that of the reported tumor cells in a transgenic mouse 
breast cancer model [18]. Interestingly, all observed tumor foci are surrounded by a similar 
microenvironment of neo-vasculature, cancer-associated collagen structure, and infiltrating 
FAD-rich NADH-poor (i.e., yellow-colored) macrophages [18] (bidirectional arrows, Figs. 
4(a), 4(d)), independent of the breast cancer model selected and the presence of field 
cancerization. 

To seek clinical relevance of field cancerization in a subject with multifocal tumors, we 
performed the tetra-modal imaging on one 2.1-cm sized tumor near a grossly visible tumor 
boundary (Fig. 5(a)), at a site 2-5 cm away from this boundary (Fig. 5(b)), and in the more 
remote peri-tumoral field >5 cm away from the boundary (Figs. 5(c), 5(d)). This tumor 
exhibits a magenta-colored field cancerization of tumor foci (broken box and ovals, Fig. 
5(b)), epithelia (arrow, Fig. 5(a)), vasculature (arrowheads, Fig. 5(a)), and vasculature-free 
stroma that strikingly echoes the cyan-colored field cancerization in the rat tumors (Figs. 3(a)-
3(e) vs. Figures 3(p)-3(t)). In particular, the volumetric imaging of a mammary duct reveals 
luminal epithelial cells (arrowhead, Fig. 3(r)) enclosed by elongated myoepithelial cells 
(arrow,  Fig. 3(r)) [19] (Visualization 1), and the connection of a blood capillary (arrowhead, 
Fig. 3(t)) to a larger blood vessel (Visualization 2). The cyan- or magenta-colored field 
cancerization fades away in the remote peri-tumoral fields (Figs. 4(c), 5(c)) that contain 
normal mammary ducts (Fig. 5(d)), suggesting the presence of a new molecular/metabolic 
margin that is outside of the conventional H&E-defined margin in the cancerized field [12–
14]. 

From the perspective of this colored field cancerization, our rat mammary tumor model 
recapitulates human breast cancer development, with no interference from xenografting, 
implantation, immune suppression, genetic modification, or fluorescence protein expression. 
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clinical model and humans, but future studies are needed to elucidate exactly what molecular 
differences exist. 

Table 3. Stratification of breast cancer patients by magenta-colored field cancerization. 

# Field 
cancerization 

Age at 
surgery 

Detection 
/diagnosis 

TNM stage  Pathology  

359 + 40 Symptom; self-
detected 

pT2; pN1a Invasive ductal carcinoma grade 2; 
Her2-; 

393 + 48 Symptom; 
palpable mass 

pT0; pN0 Atypical ductal hyperplasia; BRCA 
1+; confirmed case of multifocal 
tumors 

388 + 46 Symptom; self-
detected 

pT2; pN2a Invasive ductal carcinoma grade 1; 
multifocal; ER+, PR+, Her2+;  
confirmed case of multifocal tumors 

401 + 71 Self-detected;
history of DCIS 

pT2; pN1a Invasive carcinoma grade 2; 

372 - 82 Self-detected; 
history of DCIS 

pT1c; pN0 Invasive papillary carcinoma grade 2; 
previous lumpectomy 

373 - 59 Radiology pT3; pN2a Invasive ductal carcinoma grade 3; 
375 - 76 Radiology  pT1c; pN1a Invasive papillary carcinoma grade 3; 

ER+; PR+; recurrent cancer 
371 - 65 Radiology pT1c; pN0 Invasive ductal carcinoma grade 1; 

ER+, PR+, Her2-; 
394 - 56 Radiology pT1c; pN1a Invasive ductal carcinoma grade 1; 

BRCA+; 
398 - 37 Physician detected pT1c; pN0 Invasive carcinoma grade 2; 
400 - 75 Self-detected  pT1c; pN1a Invasive ductal carcinoma grade 2; 

Her2-; 
402 - 76 Radiology pT1c; pN0 Invasive ductal carcinoma grade 2; 

multifocal; Her2-; 

3.3 Observing signatures of cancer dormancy 

In the cyan-colored field cancerization, one H&E-benign (normal or precancerous) but 
histochemically cancerous rat mammary duct clearly intertwines with surrounding cancer-
associated blood vessels at a cooperative juncture (arrow, Fig. 4(a)), allowing possible 
intravasation of the epithelial cells with cyan-colored nuclei into systemic blood circulation. 
Because the corresponding peri-tumoral field approximates a precancerous field before (or 
after) the emergence (or resection) of the primary tumor, this intravasation may function as 
the early dissemination of precancerous (dormant tumor) cells [21] during cancer dormancy 
[22] that dominates overt metastasis (cancer mortality) [23]. It is thus important to investigate 
whether the observed field cancerization possesses the three characteristic signatures of this 
cancer dormancy [21–23]: (i) dormant tumor cells are stem-like cells resistant to therapy that 
targets primary tumor cells; (ii) early dissemination of the dormant tumor cells requires a 
hijacked program of branched mammary tubulogenesis; and (iii) therapeutic suppression 
(natural progression) of tumor proliferation rejuvenates (impedes) this early dissemination. 

There is strong evidence that indicates this stem-like origin of the cyan-colored field 
cancerization. First, the dominant optical phenotype of cyan-colored nuclei corresponds to 
concentrated unbound nuclear NADH that has been associated with progenitor (stem-like) 
cells [24]. Second, the observed alveoli/ducts in the peri-tumoral field remarkably resemble 
the mammary gland tubulogenesis by normal stem cells [25] (Figs. 3(b)-3(d) vs. Figure 1 in 
ref. 25). Third, stem-like gene signatures have been associated with the early dissemination of 
low-burden cancerous tissue that approximates a precancerous/dormant peri-tumoral field 
[26]. This plausible stem-like origin suggests that the dominant optical phenotype (cyan-
colored nuclei) might originate from one stem cell progenitor, which passed this optical 
phenotype and the underlying genotype to all its differentiated descendants of epithelial cells, 
endothelial cells, stromal cells, and tumor cells that share the optical phenotype (monoclonal 
tumor expansion) [12]. The magenta-colored field cancerization observed in the human 

                                                                      Vol. 9, No. 11 | 1 Nov 2018 | BIOMEDICAL OPTICS EXPRESS 5263 



tumors might originate from stem cell progenitors with a magenta-colored optical phenotype. 
Further investigations will be performed in the future to systematically establish the link 
between the optical phenotypes and different cell types. Regardless of the color (dominant 
optical phenotype) of field cancerization, a common stem-like origin may link it with cancer 
dormancy. 

To critically test this plausible link to cancer dormancy, we recognize the recently 
observed reversible transition between binary states of tumor cell proliferation vs. 
dissemination in breast cancer [23]. According to this transition, preoperative suppression of 
the proliferation by chemotherapy rejuvenates the early dissemination, and would enhance 
(suppress) the magenta-colored field cancerization if such link does (not) exist. We thus 
performed imaging of an ex vivo specimen from a cancer patient after preoperative 
neoadjuvant chemotherapy followed by mastectomy. The specimen was dissected from the 
grossly normal tissue between two multifocal primary tumors (diagnosed by core-needle 
biopsy) separated by ~5 cm. The two tumors were 1.1-cm and 0.3-cm in size on x-ray 
mammography, but underwent a pathologic complete response after chemotherapy [27] (no 
tumor mass was grossly found or histologically identified around the coiled biopsy marker 
clip). In contrast to this seemingly favorable prognosis by H&E histology, our tetra-modal 
imaging of the specimen in the peri-tumoral field pointed to a rather different picture (Fig. 
6(a)). The chemotherapy seemed to activate branched mammary tubulogenesis [21,23] (Fig. 
6(b); Visualization 3) in comparison to its counterpart without preoperative therapy 
(Visualization 1). This mammary tubulogenesis was intertwined with irregular blood 
capillaries for plausible dissemination (Fig. 6(b)). One capillary was undergoing active 
development by assembling intracellular vacuoles of single endothelial cells [28] (arrowhead, 
Fig. 6(c)), while the connecting larger blood vessel was undergoing active sprouting 
development (Fig. 6(c); Visualization 4) in comparison to its therapy-free counterpart 
(Visualization 2). This enhanced picture of magenta-colored field cancerization (Fig. 6) over 
its therapy-free counterpart (Fig. 5(a)) indirectly validates the above three characteristic 
signatures, and thus supports the link between field cancerization and cancer dormancy. 
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without primary tumor proliferation may dominate cancer mortality in comparison to 
proliferative cancers at primary tumor sites. The majority of solid tumors undergo years or 
decades of latency, which allows for asymptomatic minimal residual disease to ultimately 
evolve into local recurrences or recurrent metastases. However, proliferation has remained as 
a hallmark for cancer possibly due to the difficulty in identifying cancer dormancy from 
circulating blood, bone marrow, and primary tumors. The peri-tumoral field is relevant to 
field cancerization before the emergence of the primary tumor, and to cancer dormancy after 
the resection of the primary tumor, and is thus an ideal site to study both phenomena that have 
been pursued by separate research communities. Unfortunately, the investigation of this field 
has been largely restricted to genetic analysis without spatial information afforded by H&E 
histology. We have attempted an extensive investigation of this field by histochemically 
identifying common cell phenotypes in an organ of interest (breast). This context, along with 
millimeter-scale wide-field imaging that representatively samples a large surgical specimen 
from the primary tumor deep into the peri-tumoral field, allows us to detect field 
cancerization in the peri-tumoral field. Our high-content histochemical imaging of the peri-
tumoral field seems to open up new research frontiers for investigation of local invasion and 
distant metastasis. Clinically, the magenta-colored field cancerization might extend >2 cm 
beyond the tumor boundary in regions routinely labeled as “normal” by pathologists, 
necessitating more detailed study on how it changes geographically at a “margin” and the 
relevance of this to intraoperative assessment. 

In the emerging paradigmatic shift in histology from conventional H&E and IHC to SF-
vH&E, our imaging platform fills the critical gap to realize slide-free virtual IHC (SF-vIHC) 
complementary with SF-vH&E. One highly ideal tandem is to perform SF-vH&E by SRS [4] 
followed by SF-vIHC with our programmable multiphoton imaging, using one robust fiber 
laser-based optical source suitable for portable application and clinical translation. This 
tandem, in comparison to an alternative tandem that conducts light-sheet SF-vH&E 
microscopy [2] followed by the tissue-clearing-assisted volumetric IHC [10], would gain 
advantage in in vivo applications without the tissue clearing and unexpected labeling-induced 
artifacts, at the moderate cost of lowered imaging speed. The optical source for perspective 
implementation of this tandem will likely favor our fiber laser-induced supercontinuum over 
the dedicated fiber laser optimized for SRS [4]. The flexibility in our supercontinuum source 
to arbitrarily program the excitation pulses (wavelength, bandwidth, chirp, intensity, etc.) has 
been demonstrated in the first part (Part I) of this study [15], allowing perspective 
incorporation of coherent Raman scattering microscopy (including SRS). The resulting slide-
free virtual histochemistry will advance rapid diagnosis of small biopsies, real-time 
intraoperative assessment of the surgical tumor margin with plausible field cancerization, 
imaging-based stratification of cancer patients at an early-stage for precision medicine, and 
accurate postoperative prognosis or surveillance of minimal residual disease with possible 
cancer dormancy. 
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