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Automated classification platform for the identification of
otitis media using optical coherence tomography
Guillermo L. Monroy 1,2, Jungeun Won 1,2, Roshan Dsouza 2, Paritosh Pande2, Malcolm C. Hill3,4, Ryan G. Porter3,4,
Michael A. Novak3,4, Darold R. Spillman 2 and Stephen A. Boppart 1,2,3,4,5

The diagnosis and treatment of otitis media (OM), a common childhood infection, is a significant burden on the healthcare system.
Diagnosis relies on observer experience via otoscopy, although for non-specialists or inexperienced users, accurate diagnosis can be
difficult. In past studies, optical coherence tomography (OCT) has been used to quantitatively characterize disease states of OM,
although with the involvement of experts to interpret and correlate image-based indicators of infection with clinical information. In
this paper, a flexible and comprehensive framework is presented that automatically extracts features from OCT images, classifies
data, and presents clinically relevant results in a user-friendly platform suitable for point-of-care and primary care settings. This
framework was used to test the discrimination between OCT images of normal controls, ears with biofilms, and ears with biofilms
and middle ear fluid (effusion). Predicted future performance of this classification platform returned promising results (90%+
accuracy) in various initial tests. With integration into patient healthcare workflow, users of all levels of medical experience may be
able to collect OCT data and accurately identify the presence of middle ear fluid and/or biofilms.
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INTRODUCTION
Otitis media (OM) is a common infection of the middle ear in
children, with combined direct and indirect annual costs
estimated to be (US$) 4 billion.1 OM is a broad term for
inflammation of the ear, which is further subdivided into specific
disease states,2 including OM with effusion (OME),1 an accumula-
tion of fluid within the middle ear cavity (MEC), and acute OM
(AOM),3 an active infection, which may or may not include
purulent and infected middle ear fluid. In either case, fluid
accumulation may lead to hearing loss and speech and language
developmental delays.4 If three or more episodes of AOM occur
within 6 months, or four within a year, the infection is diagnosed
as recurrent acute OM (RAOM),5 or when middle ear fluid persists
for 3 months or longer, as chronic OME (COME).5 The surgical
placement of tympanostomy tubes (TT)6 can be used to treat
these conditions. As such, TT placement is one of the most
common outpatient procedures performed under anesthesia for
children.7 It has been theorized8,9 that middle ear biofilms play a
significant role in the persistence of RAOM10,11 and COME.12

Biofilms are communities of bacteria that have altered genetic
expression profiles13 and a self-excreted exo-polymeric matrix that
promote increased resistance to host immune system activity and
antibiotics.14 Biofilm-mediated infections in the ear, other regions
of the upper respiratory tract, the urinary tract, and on implanted
catheters and prosthetics, are all difficult to treat.15

To diagnose OM, physicians typically utilize a standard otoscope
to visually assess the eardrum (tympanic membrane, TM).
Otoscopes provide surface illumination and magnification of the
TM and allow for qualitative interpretation of visual indicators
related to OM infection, including the coloration and transparency

of the TM and presence of middle ear fluid. Pediatricians and
otolaryngologists intimately familiar with OM have an estimated
diagnostic accuracy in the range of 50–70% using otoscopy,16–18

although early career physicians remain unquantified. Given the
difficulty in properly diagnosing OM, AOM is frequently mis-
diagnosed. To effectively treat patients diagnosed with OM,
current treatment protocols attempt to provide recommended
best practices for antibiotic prescription and TT surgery by
integrating evidence-based medicine though a systematic review
of past studies and data.1 Treatment protocols are designed with
this uncertainty in mind, aim to reduce antibiotic over-prescrip-
tion,19 and mitigate antibacterial resistance proliferation.20 Despite
these efforts, treatment for AOM is one of the most common
reasons for children to be prescribed5 and even overprescribed21

antibiotics, and the distribution of antibiotics remains high.22

Other tools, such as tympanometry, acoustic reflectometry, and
pneumatic otoscopy, can assess the middle ear using more
functional metrics. However, tympanometry23 or acoustic reflec-
tometry24 are often recommended to be used in conjunction with
otoscopy for a more complete assessment of infection status.5

Pneumatic otoscopy is recommended as the gold-standard for OM
assessment,1 and when used properly, has an improved diagnostic
sensitivity of 94%.17 However, it is difficult to utilize properly and is
often not used in practice, perhaps due to a lack of training or
challenges in properly sealing the ear canal.5,25 Overall, there is an
unmet need for a tool and methodology that provides a
straightforward and quantitative assessment of middle ear
pathology for a consistent and reliable diagnosis of OM.
Optical coherence tomography (OCT), a noninvasive cross-

sectional imaging technique, is one possible tool that can
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quantitatively assess the TM and adjacent middle ear space7,26–29

for OM. OCT operates using a principle similar to ultrasound
imaging, detecting back-reflections of near-infrared light scattered
from within tissue, and provides high-spatial-resolution images of
tissue at the micrometer scale. Cross-sectional (B-mode) images
can be acquired, which consist of multiple adjacent A-lines (depth-
scans) assembled as the optical beam is scanned across tissue. The
ability of OCT imaging to identify middle ear fluid has been
previously demonstrated,30 and more recently, biofilms adhered
to the TM during chronic or recurrent acute OM have been
imaged with OCT.31 Figure 1 demonstrates representative cross-
sectional OCT B-mode and A-line data from pediatric human
subjects with these features, acquired with the OCT system and
handheld probe used in this study.
Despite these imaging capabilities, two significant barriers for

translation of this technology remain. First, there are no clinical
criteria or diagnostic guidelines to assess OCT images of the TM
and middle ear for signs of OM. Second, previous studies that
have employed OCT for OM assessment have utilized experts
familiar with middle ear imaging, OM, and OCT to interpret and
correlate OCT data to currently accepted clinical signs and
symptoms of OM. Therefore, there is a need for diagnostic criteria
to be defined for OCT images of OM, and employed without the
regular involvement of an expert reader, particularly as the cost of
this technology is reduced and optimized for point-of-care and
primary care use by front-line healthcare providers.
Machine learning (ML)-based assessment techniques may

provide one solution to these challenges and help to objectively
classify and interpret this data. ML approaches are currently in
development to supplement radiologist and pathologist diagnos-
tic capabilities for most medical imaging techniques (X-ray,32

MRI,33 Hematoxylin and Eosin (H&E)-stained pathology,34 and
ultrasound imaging35), following existing standardized diagnostic
criteria. Some of these approaches are even beginning to exceed
the average radiologist performance, such as one recent algorithm
for detecting pneumonia from chest X-ray images.36 Guidelines for

the identification and classification of disease states with OCT
imaging are currently under development for ophthalmology,37–42

cardiology,43 intravascular imaging,44 dermatology,45 and other
applications,46,47 although none currently exist for otolaryngology
applications or OM.
This article details results from the development and validation

of an automated comprehensive framework, the exploration of
the predictive power of various feature subsets, and the
performance of several classifiers to identify OM in OCT images.
Challenges for clinical translation and avenues for platform
improvements are discussed. Finally, guidelines for the minimum
performance of an imaging system are explored, specifically for
signal-to-noise ratio (SNR) and resolution, to adapt this method to
OCT systems used in clinical point-of-care and primary care
settings.

RESULTS
Classification platform
The overall platform operation is shown in Fig. 2. Similarly, clinical
findings for subjects in this study are in Supplementary Table 1,
with discrepancies between OCT and physician findings bolded.
The automated platform first begins feature extraction on the
database, which consists of OCT images, digital otoscopy images,
and de-identified patient reports. Feature extraction from the
dataset of each subject required ~40 s. This generates a large data
table to be used for classification. This table is then split into
training and test groups to assess performance of the classifier
using 58-fold random subsampling cross-validation. A total of 22
classifiers were evaluated to compare the performance of these
feature groups, with the performance of the most computationally
simple method from each classifier group (Ensemble, SVM, kNN)
highlighted in Table 1.

Fig. 1 Left: Portable optical coherence tomography (OCT) imaging system and handheld probe. This system was utilized to collect human
subject data as part of several past and ongoing clinical observational studies in both outpatient and intraoperative surgical environments.
The handheld probe and digital otoscope are shown inset. Right: Representative OCT cross-sectional (B-scan) images and A-line profiles. A
OCT and digital otoscopy (inset) data from a normal ear. B Data from an ear with a middle ear biofilm (MEB). The A-line profile shows
additional scattering behind the TM. C Subject with middle ear fluid (MEF) and a MEB. The scattering profile shows three distinct regions in
the scan. White dashed lines denote the location of the A-line scan within the OCT B-scan. Scale bars represent 100 micrometers in depth
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Performance of feature subsets
Different feature sets explored the utility of different sources of
information (from the clinician, OCT, and otoscopy), and which
metrics were effective predictors for middle ear infection, as
shown in Table 1. Results from Subsets 1 (Clinical reports) and 2
(OMGRADE scale—otoscopy) demonstrate the difficulties of using
limited features in a classifier, and perhaps more generally, that a
single piece of information is insufficient to make a reliable
diagnosis. While achieving reasonable performance on average,
each image was broadly classified as either completely “correct” or
“incorrect”. The performance of Subset 3 was markedly improved
over Subsets 1 and 2. While clinicians do not necessarily have
access to these custom created digital otoscopy metrics, they are
perhaps indirectly interpreted. When all clinical information is
considered together (Subset 4 or 5), improved performance is
achieved. Overall, classifier performance in Subset 6 using data
from the portable OCT imaging system was improved over
Subsets 1–3, in part due to the availability of more than a single
feature for classification in each A-line. When all (clinical and OCT)
features are used together (Subset 7), improved performance is
found with more consistent labeling performance across images,
rather than the binary-like labeling in earlier subsets. Subset 8
reduces the feature set by removing the 5 worst performing
features as determined in Subset 7 by the out-of-bag error from
the ensemble classifier, which reduces computation time by 22%

and maintaining roughly equivalent performance. For Subset 8,
ROC curves and confusion matrices are provided in Fig. 3.

Towards a clinically focused application
These results are promising for the utility of the feature extraction
method used in this platform for detecting otitis media. However,
the real-world usage of this type of system will eventually depend
on the classification of new, untested data against a fully trained
and deployed classifier. Figure 4 demonstrates this principle and
also shows two display modes available in this system, along with
the labeling annotations provided for each A-line when recom-
bined into OCT B-mode images (in contrast to labeling the entire
image with broad stroke, single output). Uncropped OCT images
are shown in contrast to those in Fig. 1, demonstrating the limited
preprocessing needed for data used in this platform.
With the development of the platform workflow and initial

testing of the classifier pipeline, applied questions and challenges
were explored using the more clinically focused set-up. To begin,
the platform was first re-tested to ensure it could detect an
effusion or middle ear fluid (MEF) using OCT data as accurately as
a clinician with otoscopy, the current standard-of-care. Figure 5
provides an overview of the classification conditions and results.
This test employed a random forest classifier, as it was the best
performer (albeit marginally) in the initial exploration. The
physician’s diagnosis using otoscopy was used as the ground
truth to identify symptoms of infection using OCT features. An
estimated future performance of 91.50% was determined to
distinguish normal and abnormal OCT scans with the physician
(DOC) as the basis. These results show that using OCT metrics to
identify infection is equivalent to a physician’s diagnosis with
otoscopy 91.50% of the time. When using the same process, now
with the ground truth derived from readers interpreting OCT data
for abnormal scans, the predicted future performance increased to
99.16%.
This result suggests that the platform can identify clinically

indicated MEF in subjects as accurately as an expert human
reader. Interpreting these results, the increased performance may
be due to the improved capability of OCT to detect depth-
resolved microstructural changes that are indicative of infection,
versus visual-only otoscopic observations of surface features,
where signs of infection may be missed if subtle, or unintention-
ally misinterpreted. OCT may therefore be a noninvasive,
unbiased, and more effective tool to quantitatively detect signs
of MEF and biofilms, compared to otoscopy, especially without the
need for an expert human reader when implemented with this
automated analysis platform. Apart from identifying the clinical
indications of fluid, further differentiation is possible between

Fig. 2 Program overview. Optical coherence tomography (OCT) images, digital otoscopy images, and de-identified patient reports were used
to create a database with 25,479 entries. Using this database, cross-validation is performed to train and test several classifier types. Finally,
each OCT A-line scan is color-coded with the predicted class after classification (Green=Normal, Yellow= Biofilm, Red= Biofilm and fluid).
Representative results shown are correctly classified (100%) and representative of each class

Table 1. Performance (accuracy) comparison results between most
computationally simple major classifier types in MATLAB, testing eight
feature subsets

Feature subsets Ensemble SVM kNN

Random
forest

Gaussian Fine

1 Clinical report keywords 82.6 82.6 75.8

2 OMGRADE scale 80.2 80.2 69.0

3 Six digital otoscopy metrics
(custom)

96.6 96.6 96.6

4 Physician info (1+ 2) 92.1 92.1 92.1

5 All clinical information (1+ 2+ 3) 100.0 100.0 100.0

6 Twelve optical coherence
tomography (OCT) metrics

93.9 90.4 88.9

7 Clinical and OCT features (5+ 6) 100.0 98.4 99.5

8 Least useful 5 removed 100.0 99.6 99.9
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different types of abnormal scans based on depth-resolved OCT
data, now between three groupings: “Normal”, “Biofilm”, or “Fluid
and Biofilm”.
Finally, the performance of this leave-one B-scan out method

was then tested on the same subsets shown in Table 1. Ultimately,
this test achieved 91.57% accuracy using Subset 8. Although this
system needs further refinement and additional data to more
thoroughly evaluate its full potential, it performed well given the
imposed conditions and limited available dataset. Complete
results from this alternate testing methodology (using Subsets
1–8) are shown in Supplementary Table 2. In total, these initial
classification tests suggest this feature extraction and classification
platform may provide one method to potentially improve the
clinical diagnosis of OM using OCT, as accurately detecting signs
of middle ear infection, including the presence of biofilms and
MEF, is crucial to properly diagnose and subsequently treat any
patient for OM.1

DISCUSSION
Accurately diagnosing OM infection is a challenging task. Key
factors to properly diagnose OM utilizing current national
recommended guidelines and practices include accurately identi-
fying the length of time of infection, the determination of any
bulging or retraction of the TM,3,48 and perhaps most importantly,
the presence and type of any MEF.1 Children can be mostly
asymptomatic with MEF, or OME,1 which creates difficulty in
establishing an infection timeline. Restless and uncomfortable
children can similarly complicate otoscopic assessment and
diagnosis.

As previously discussed, available tools to diagnose OM typically
provide qualitative information, which may not always suggest a
clear diagnostic conclusion. While the otoscope provides visual
information about the physical appearance of the ear, distinct
infection states are not always observable in daily practice. As the
current gold-standard, pneumatic otoscopy can provide additional
functional information about the mobility of the TM, but this
technique is not often used as previously discussed. Acoustic
techniques such as tympanometry and acoustic reflectometry
provide additional information about the acoustic response of the
ear, but are still only considered to be supplemental tools for a
diagnosis of OM. Once a diagnosis is made, physicians must then
rapidly determine the best course of treatment, as time in the
exam room with each patient can often be limited to no more
than 10–20min49 in some clinics. As such, OM is difficult to
diagnose, and is one of the leading reasons for children to be
prescribed broad-spectrum antibiotics and experience temporary
hearing loss.22

There are other tools in development that aim to improve the
acquisition of specific diagnostic markers used to diagnose OM.
MEF can be detected through several means, including gold-
standard pneumatic otoscopy, ultrasound,50 and a recently
developed short-wave infrared wavelength otoscope.51 The
position of the TM can similarly be detected using light-field
imaging.52 However, an OCT imaging system integrated within an
otoscope as demonstrated here may provide a more complete
solution to identify both MEF and biofilms, in addition to many
other diagnostically relevant and needed features, including
tracking the TM position during deflection by pneumatic
modulation.27 By providing simultaneous high-resolution, depth-
resolved, and quantitative structural, functional, and optical

Fig. 3 Receiver operating characteristic (ROC) curves and confusion matrices for Subset 8 results. Full testing results from all eight subsets
shown in Table 1. Predicted/True/Positive (Pos.) Class 1= “Normal”, Class 2= “Biofilm”, Class 3= “Biofilm and Fluid”. AUC Area Under the Curve;
Ens Ensemble; SVM Support Vector Machine; kNN k-Nearest Neighbor
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characterization of tissue and MEF, OCT imaging can be
performed on tissue without any preparation and with subjects
in any state (awake, sedated, or anesthetized).
Currently, there is no accepted method to identify the presence

of middle ear biofilms (MEBs), although it is likely that biofilms
increase the opacity of the TM during infection. In this study, the
development of the “Normal”, “Biofilm”, and “Fluid and Biofilm”

states was made possible by observing the image-based features
in OCT data in this and past studies. It was observed that subjects
with more severe cases of OM have MEF in addition to an
accompanying MEB. This raises additional questions about the
pathogenesis of MEB during OM; questions that are beyond the
scope of this present study.
OCT, however, could be one tool that provides a quantitative

identification of biofilms and fluid, and in addition, provide further
characterization of the purulence or scattering of the fluid. In this
and prior studies, it is common to identify a biofilm layer and
middle ear fluid in subjects with more severe cases of OM. As
infections progress, any MEF becomes more purulent and optically
scattering, depending on the duration of the infection. This is
likely due to increasing amounts of immune cell activity and
biofilm dispersal within the MEC.48 Clinicians do not currently
diagnose or treat middle ear biofilms as there is no accepted
diagnostic tool, nor established or tested/verified treatment
regimen. With these limitations in mind, this platform may offer
the immediate potential to identify the presence of MEF and MEB,
as well as enable new and expanded capabilities in the future.
The use of ML analysis to classify OCT images from subjects with

OM can provide a means to automatically classify data and
provide a probable diagnostic outcome. When an image is
successfully collected, a combined OCT+ML platform could
ensure the user would have a minimum baseline skill for detecting
diagnostic markers for OM. In its current form, this platform is
intended to supplement the assessment of the numerous
quantitative details within the data and apparent in tissue, and
integrate statistical measures to help guide decision making. In

Fig. 4 This type of system will be deployed into clinical settings and generate new (previously untrained) datasets, which will be analyzed by
the classifier to generate labeled images (right). Two display modes were created to suit expected use cases. “Reader” view (top) is the default
output, where the classifier prediction is color-coded at the top of the image (coding information annotated, bottom). The predicted class and
confidence (Biofilm–High) can be color-coded, with text, or with both as shown. Images have been widened 3x to demonstrate A-line level
granular identification of different regions in the image data. Here, uncropped scans are shown, with empty areas coded in Blue,
demonstrating the limited preprocessing steps tolerated by this platform. “Developer” view (bottom) is tailored to assist the development of
new features or classifier functionality to identify specific regions within an image. As the class of training data is known, classification
accuracy (CA) can be computed and displayed (bottom, 83% of classifier A-line predictions within this image were correct). Scale bars in each
dimension correspond to ~100 micrometers. These results can be verified by the physician, “accepted” and integrated into periodic future
updates

Fig. 5 Can optical coherence tomography (OCT) discriminate fluid as
accurately as a physician? Using “Leave-one B-scan out” cross-
validation and the physician’s diagnosis (DOC) to train the classifier
yielded an estimated future accuracy of 91.50%. Using quantitative
OCTmetrics (OCT) as the ground truth increased accuracy to 99.16%
to identify abnormalities in OCT data related to infection. In
addition, OCT data can be further utilized to discriminate different
types and qualities of infection, including middle ear fluid and
biofilms, which is not possible with otoscopy alone
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turn, with an accurate diagnosis, it may then be possible to
provide the most appropriate and effective treatment for the
current state of infection. This platform is not intended to replace
clinical expertize, but offers the potential for further research and
clinical investigations before being validated as an approved
technology for clinical decision making.
The clinically focused set-up utilizing an RF classifier employed a

“leave-one B-scan or subject-out” strategy, with K= N= 58-fold
cross-validation. The classifier is discarded after each training
iteration rather than continuously being retrained on all data, and
recreated for the next iteration. This strategy attempts to more
accurately simulate expected future use and performance of this
platform, where an untrained and unknown patient or dataset will
be investigated using a pre-trained classifier. The differences in
the use of data during classifier training may explain why the
MATLAB classifiers perform differently than the custom RF
classifier, although this method may give a sense of a lower
bound on performance within this current dataset. Different
feature sets were also used to test the performance of features
extracted from OCT data and clinical data. The best performance
was found when a combination of features were used, indicating
that both OCT and currently utilized clinical information together
provide advantageous and complementary classification
information.
In the future, additional features can be added to this platform

to improve its versatility and robustness. For instance, data
collection can be improved to allow for the determination of the
viscosity of in vivo MEF with OCT, which may allow for further
discrimination of serous and mucoid fluid types. To ensure
usability for real-time analysis, algorithms that ensure rejection of
unintended or unwanted imaging artifacts and reflections can be
implemented, along with a notification system to request the user
to retake data with identified artifacts. Existing metrics and
features can also be improved, such as expanding digital otoscopy
analysis to include other metrics related to TM coloration,
transparency, or opacity.53 The presentation of data can also be
scaled to suit the expected use. In clinics with technicians or
situations where a simpler screening or evaluation is needed,
perhaps a simple output can be designed for notification:
‘normal’’, ‘recommend for clinical evaluation’’, or ‘retake data.’’ In
a more traditional clinical setting, some physicians may desire to
see an expanded set of relevant information, which can be set to
include the full image data as well as the metrics described above,
as needed.
There are several points in this study that merit further

discussion. The three class output labels that were used in this
platform take into consideration immediately useful clinical
information. In the future, many more infection states of OM
and diseases or conditions of the TM can be added, such as TM
perforations,54 dimeric TMs from previous surgical interventions,55

cholesteatoma,56,57 or myringo-/tympanosclerosis.55 This platform
can readily expand to accommodate these additional states,
although additional testing with appropriate and sufficient
training data for each newly added condition will be required to
assess accuracy. Examples of a dimeric TM and a TM with
myringosclerosis are shown in Supplementary Fig. 1. While OCT
imaging can identify biofilms, currently there is no recommended
course of action for treatment of a biofilm within current
guidelines, nor is there any clinically accepted diagnostic method
to noninvasively identify biofilms in the middle ear.58 As biofilm-
related infections are persistent due to their innate ability to resist
the host immune response and antibiotic treatment,59,60 it is
expected that management strategies for chronic OM will follow
treatment strategies used for other biofilm-mediated infections,
such as cystic fibrosis61 or other respiratory infections.62 Finally,
our group is currently developing systems with reduced off-the-
shelf costs,28,63 most recently culminating in a portable briefcase
form-factor.64 Such systems are portable and can be easily

transported to non-traditional point-of-care settings, and are
suitable for cost-averse clinical disciplines like primary care.64

Suggestions for implementing this system in different and/or
lower-cost platforms are included in the Methods section.

METHODS
OCT system and human subject imaging
A previously developed custom-designed portable and handheld OCT
system, shown in Fig. 1, was used to image human subjects and
characterize various presentations of OM in clinical studies.27,29 Briefly,
this system is based on a spectral-domain OCT engine with a center
wavelength of 860 nm and an approximate bandwidth of 135 nm. The
system has an axial resolution of 2.4 μm and a lateral resolution of 15 μm.
The system emits an optical power of 2.5 mW onto the tissue, which is well
below the ANSI standard safety limits for incident exposure. A digital
otoscope (Welch Allyn, USA) was used to acquire digital otoscopy images
of the TM. Further details can be found in an earlier publication.30

Pediatric subjects were recruited and observed under IRB (Institutional
Review Board)-approved protocols (approved by both Carle Foundation
Hospital and The University of Illinois at Urbana-Champaign) at the primary
care/physician’s office, specialist otolaryngology clinic, or intraoperatively
in the surgical ward at Carle Foundation Hospital, Urbana, IL. Informed
consent was acquired from all participants by hospital research staff. For
this study, 58 previously imaged subject datasets were selected from an
internal data repository. Each dataset consisted of a representative cross-
sectional OCT B-scan image, a color digital otoscopy image, and a de-
identified clinical subject report. These subjects reflect the range of patient
presentations of OM, consisting of healthy normal controls, and subjects
diagnosed with acute otitis media (AOM), otitis media with effusion (OME),
chronic otitis media with effusion (COME),1 and recurrent acute otitis
media (RAOM).3 Clinical findings from each dataset are shown in
Supplementary Table 1, including the clinical impression of the presence
of fluid, as determined by a physician’s assessment using otoscopy (OTO),
and a reader examining OCT data (OCT). Discrepancies in the presence of
middle ear fluid (MEF) between these two analysis methods are bolded.

OCT image groupings and reader study
To interpret and label OCT training data appropriately, a small blinded
reader study was performed. Three readers familiar with OCT, OM, and
middle ear imaging were trained through a guided analysis of two
representative sample images from each group, consisting of data not
used in this study. Then, each reader evaluated and classified each OCT
image in this dataset into one of the group classifications used in this study
(“Normal”, “Biofilm”, “Biofilm, and Fluid”). Trends identified in OCT images
were used to develop these groupings, as no currently accepted
noninvasive clinical techniques provided information related to the
presence of middle ear biofilms.58 These groupings were developed from
our past observational clinical studies where OCT images of subjects with
OM were correlated with clinical findings reported by physicians, or where
intraoperative OCT imaging was directly compared to surgical intervention
and microscopy findings during TT surgery. Normal cases were identified
by a TM of ~100 micrometers thick and the lack of any additional
structures (biofilm or effusion) observed in infection states. The second
grouping (“Biofilm”) was created as otoscopy does not provide an
indication of the presence of a middle ear biofilm, perhaps only the
appearance of a dull, thickened, or opaque TM. The third grouping
(“Biofilm and Fluid”) was created due to the presence of a biofilm in all
scans that contained MEF. These classes are shown in Fig. 1. Further
discussion of these correlative studies and results are described in previous
publications.26–31,65–69

The consensus or majority vote of the three readers was used as the final
label for this classification. Overall, there was little variation in reader
assessment. For 58/58 scans, at least 2/3 readers agreed on the group
label, with all readers completely agreeing on 38/58 subjects.

Classifier set-up (1/3): defining and extracting features
Features were developed to extract or capture inherent qualities of tissue,
utilizing a broad range of physical/structural, clinical, or optical metric to
numerically quantify infection states. A total of 20 features (briefly
enumerated in Supplementary Table 3) were extracted from each dataset,
with 12 unique to each OCT depth profile, 2 derived from the physician’s
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clinical assessment of each subject, and 6 from digital otoscopy images
specific to each subject’s ear.
OCT-based features aim to quantify information about the optical

properties of the tissue, which are known to vary with the disease-state of
the ear. An automated extraction subroutine first identifies areas of interest
in each OCT scan with no preprocessing of data directly gathered from the
imaging system shown in Fig. 1. Then, a peak-finding algorithm and
various statistical measures quantified the density and distribution of
tissue based on the location and distribution of scatterers in each depth
scan. To avoid erroneous peaks, noise-floor thresholds were set
dynamically on each depth scan using Otsu’s method.70 Additional metrics
such as attenuation and optical thickness were similarly calculated. When
comparing infection groups, this information can help differentiate the
physical dimension, amount, and type of tissue when comparing infection
states with varying amounts of solid tissue, fluid, and biofilms.
All OCT images were first median filtered using a 2 × 2 kernel and

window averaged by a 5-pixel lateral window to reduce noise or speckle,
and increase uniformity for analysis. Next, the image area was
automatically segmented, and a depth profile of each position was
isolated, which was taken radially from the TM surface into the MEC. This
process is discussed in detail in a following section. The following features
were extracted from OCT data:

Optical thickness. The optical thickness (extracted radially) of the TM and
any associated MEB and/or MEF has been shown to be statistically linked
to infection state.26 MEF, bacterial components, or MEB are present across
varying infection states, and are not present in healthy controls.

Standard deviation of peak-position location. The distribution of scatterers
in depth relates to the amount of tissue detected by the OCT system, and
the relative distribution in depth. In healthy ears, only a limited number of
peaks will be identified within a 100 micrometer range (typical thickness of
a human TM), whereas in cases with an effusion or biofilm present, this
value will be larger.

Mean, standard deviation of peak width. Peak width statistics refer to the
size and distribution of the scatterers, as with OCT it has been observed
that MEF typically becomes more purulent as an OM infection progresses.
The mean peak width correlates to the average physical size of scatterers
in a scan. The standard deviation of peak width correlates to the
distribution of physical sizes of scatterers in a scan.

Mean, standard deviation of peak prominence. Peak prominence statistics
relate to the optical composition and distribution of scatterers, as
interfaces with larger local refractive index differences give rise to higher
backscatter intensity OCT signals. During OM infection, the TM becomes
inflamed, with an influx of interstitial fluid and blood,26 which have
different optical properties to that of bacteria, mucous, and scatterers
within an effusion. Mean peak prominence correlates to the different
optical properties of scatterers, compared to the surrounding medium. The
standard deviation of peak prominence correlates to the distribution of the
varying optical composition of tissue in a single scan.

Total number of peaks. The total number of peaks is correlated to the
density of the tissue or media, and increases with the presence of fluid or
biofilm during an infection. Scattering distributions or profiles of normal
and abnormal cases have been detailed in previous publications,27,68,71 or
as shown in Fig. 1.

Optical attenuation maximum. OCT provides depth-resolved quantitative
structural and functional information. The optical attenuation can be
calculated by utilizing a previously developed method that calculates the
depth-wise attenuation coefficient at each pixel72:

μ½i� � I½i�
2Δ

P1
iþ1 I½i�

; (1)

where Δ is the (depth) pixel size, and I[i] is the intensity value at a given
depth location i. This formula was applied over the previously fitted region
of interest identified using the radial fitting from Feature #1 (Optical
thickness) to ensure it is calculated over valid points. This method provides
numerical discrimination of the different scattering properties of different
tissue types. The maximum attenuation in a single depth scan may differ
between infection groups, related to the properties of differential
components in healthy ears and in cases of infection.

Optical attenuation mean, sum over peak-detected depth. The mean
attenuation differential between infection groups will differ based on the
additional presence of MEF and biofilm components. The sum will provide
a measure of the overall signal attenuation in the depth scan. Scans with
additional biomass are expected to have higher attenuation than scans
from a healthy subject.

Fourier width, peak prominence of central peak. Fourier analysis of OCT A-
line data provides information regarding periodic or structured features in
tissue, represented numerically by analysis of each peak width and
prominence. The width of the central peak provides differential frequency-
based information related to the optical properties or size of present
structures, such as sparse scatterers within a fluid (high frequency) or
larger structures such as a biofilm or dense fluid (low frequency). The
prominence of different scans correlates to the ratio of low and medium
frequency terms in an image, related to the optical properties of tissue.
Additional features were derived from patient assessment clinical

reports and digital otoscopy images. In this study, physicians first
performed a physical exam on each patient to assess their overall state
of infection and prevent any bias in final diagnosis. Clinical reports were
parsed for keywords (shown in Supplementary Table 4) related to otitis
media or the health of the ear. For the purposes of this study, digital
otoscopy metrics were collected to assess the TM for infection, which was
converted and quantified using the OMGRADE scale.53

Otoscopy graded score/OMGRADE. Otoscopy images were analyzed using
the OMGRADE scale,53 which provides a numeric score for grading the
state of infection of the middle ear based on features identified with
otoscopy. This scale ranges from 0–6 to distinguish different pathological
conditions. Briefly, Grade 0 is a transparent TM in normal position, Grade
1 shows an identifiable fluid level, Grade 2 is an opaque identifiable fluid
level in the MEC, while Grade 3 is a completely opaque TM although in a
normal position. Grade 4 is a completely opaque and bulging TM, Grade 5
is an opaque TM with bullous formations or a contourless TM with swollen
patches of keratin. Grade 6 corresponds to the presence of a perforation in
the TM, retraction pocket, or cholesteotoma with or without discharge.

Physician’s report score. Physician’s reports are vital to properly correlate
image-based features with clinical symptoms. Available reports were
parsed for keywords73 that provide some indication of a healthy control or
instances of OM and related risk factors. Each keyword was given a
numerical value and an overall score was tabulated for each subject. Cues
related to normal healthy controls or from OM-unrelated visits to the
physician were awarded 0 points, such as “unremarkable ears” or “clear
TM”. Keywords assigned 1 point include “inflammation”, “effusion”,
“erythema”, “inflamed”, “smoke”, “family history of OM.” Two (2) points
were awarded to keywords such as “antibiotics”, “referral”, “persistent”, or
“purulent.” A complete list of the terms used for scoring is shown in
Supplementary Table 4. Higher scores related to more advanced infections.
While this metric is empirical and specific to the language used in these
reports, the composite score represents the clinical findings of the
physicians involved in this study, and by extension, the inherent difficulty
in diagnosing OM. Other risk factors,73 such as the time of year of the
report, age of the subject, and audiological exams (if available), were
considered in this scoring system, but ultimately not included due to the
complexity in assigning a score to multi-factorial data.
Finally, six metrics from digital otoscopy74,75 were developed to

discriminate normal and abnormal tissue given different color profiles of
the TM typically observed as part of the physical exam. Although these
values are not directly reviewed by physicians, this was an additional
method to quantify the exam process. Digital otoscopy images were
collected using a digital otoscope tool, which ensured consistent
illumination and sensor performance between imaging sessions. Earwax,
which is a confounding factor and unrelated to infection state, was
manually segmented out. Images were then converted to Hue, Saturation,
and Luminance (HSL) color space to separate, extract, and quantify color
(hue) and saturation separately from illumination information.

Hue: average, median, median absolute distance value across otoscopy
image. The values calculated from the hue of the image relate to the
color of overall redness, injection, or erythema from the surface of the TM.
The average value of hue across an otoscopy image was related to the
average color shade across the image of the TM. The median value of hue
provides differential information from the average, especially in cases
where the TM coloration is skewed (non-uniform) across the image. The
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median absolute distance provides a measure of spread, statistical
dispersion, or the width of the distribution of color shades in a single
image.

Saturation: average, median, median absolute distance value across otoscopy
image. The values calculated from the saturation of the image relate to
the intensity of the color of overall redness, injection, or erythema from the
surface of the TM. The average value of saturation provided another
measure of the intensity of color, which relates to infection state. The
median value of saturation provides another related measure of the
uniformity of the intensity of color. The median absolute distance provides
a measure of spread, statistical dispersion, or the width of the distribution
of the intensity of color in a single image.
With these 20 features defined, each extracted depth profile had 20

quantitative values calculated and placed in the corresponding database
entry.

Classifier set-up (2/3): ground truth, features assessment
For each classification experiment, several major elements were selected:
the classification method, the feature subset used in the classifier, and the
ground truths assigned to the features that distinguished the groups.

Classifier method. Twenty-two classifiers (available at the time of writing)
within the classification learner app in MATLAB were utilized to initially
classify the dataset, consisting of SVM, kNN, and ensemble techniques. The
most computationally simple method from each group was selected to
compare performance, and was implemented using the suggested initial
settings in the program, briefly: kNN (“Fine”, 1-neighbor, Euclidian distance,
equal weighting), SVM (“Gaussian” kernel, 1v1 multi-class), and Ensemble
(“Bagged Trees”, 30 learners). Other tests utilized a random forest (RF)
classifier76,77 to test a more clinically focused classification set-up, where
instead of randomly subsampled training and test sets, a leave-one B-scan
out technique was selected.44,47 In part, this combination was utilized to
investigate whether this would reduce error in unbalanced datasets where
data may be limited. In addition, to avoid sensitivity to incomplete data
within a specific data vector, such as missing otoscopy images or
physician’s notes, and can even rank the most useful features for
classification. Briefly, this strategy works by splitting N total images into
a training set (N-1 images) and setting aside one image for testing. Each
image in the dataset was tested on the trained classifier, and the mean
accuracy was calculated across all loops or “folds”, which served to
estimate the expected future performance on untrained data.

Feature subsets. Different feature subsets were utilized to compare the
predictive ability of information gained from different parts of the clinical
examination. If certain features are chosen, the resultant classification
performance can help determine, which features are most relevant to
identify signs of OM in OCT images. In the Results section, the ability of
otoscopy and OCT to identify the presence of fluid in subjects was tested
with this platform, among other comparisons of interest.

Ground truth. To begin, the data was sorted and labeled to accurately
reflect the clinical indications of the subject and the corresponding OCT
metrics. The absolute ground truth for diagnosing OM is invasive surgical
evaluation of the middle ear contents of each subject. However, when
considering typical examination methods, invasive surgical inspection is
impractical to perform given limitations of time and resources in daily
practice. For this test, the ground truth basis was either derived from the
physician’s impression using otoscopy as stated in the clinical reports
(DOC), or from the consensus of three readers analyzing OCT images (OCT)
as previously described. Comparing different ground truths in this manner
allowed a direct comparison between the capability of the current “gold-
standard” and OCT as a new technique.

Classifier set-up (3/3): displaying and presenting data
The presentation of the results from this framework was developed to be
relevant for clinical applications as demonstrated in Fig. 4. Two viewing
modes, “Reader View” and “Developer View” were implemented. The
“Reader view” is the default output, which annotates the OCT image with
the predicted class of each depth profile and allows for quick visual
interpretation of classifier results. The class is color-coded to assist in quick
discrimination of infection state, with “Normal” cases in green, “Biofilm” in
yellow, and “Fluid and biofilm” in red. The expected class of the image and

expected accuracy are displayed, ranging from High (>80%), Medium
(>50%), Low (>20%), and error. In “Developer View”, the exact numerical
classification accuracy is shown, which compares the expected class to the
provided group labels in the training set data. This mode was useful when
modifying feature detection, segmentation, or adding new features, to
ensure proper functionality and performance. In principle, the complexity
of the display modality can be adjusted to suit any range of needs. For
example, it could display simply an error/green/yellow/red light, indicating
the severity of infection or need for referral, or to retake a scan.

Computational hardware
All results from this work were computed using an off-the-shelf PC with a
Core i7-5960X3 GHz CPU, 32 GB 2666MHz RAM, a 7200 RPM HDD, and a
GTX 1080, although the GPU was not used for processing or analysis.

System requirements and suggestions for data collection
To abstract the use of this platform with any comparable system,
guidelines for OCT images and otoscopy images were defined and
evaluated. In general, all OCT data should be of similar quality in regards to
axial and spatial resolution, SNR, wavelength, and other imaging proper-
ties, such that comparisons can be made of the underlying physical
features that are being detected. While B-scans are advantageous to utilize
information from adjacent A-lines, such as for window averaging, fitting,
and analysis as described above, it is not strictly required as this system
ultimately relies on A-line data to classify these infectious states.
Additional pre-processing steps can be undertaken that help to reduce

the discrepancies when using multiple systems to collect data that feed
into a common database, such as cropping images to remove artifacts in
OCT, segmenting data to remove unrelated image features such as earwax,
or by reducing illumination variances in otoscopy. OCT data must be free
of wrapping, back-reflections, saturations, scanning or other optical
artifacts. For consistency, images should be taken and compared from
the same region of the ear. The light-reflex region is easily identifiable in
most subjects and was chosen as the physical landmark on the TM for
images in this study.
While the intensity values in the OCT data are not used for classification,

the SNR of an OCT system image must be of sufficient quality to clearly
resolve tissue features throughout the imaging window, and also ensure
that the image SNR is of sufficient quality for later analysis metrics to be
successfully detected and computed. This was determined empirically by
taking high-quality scans from the currently used system and later
synthetically degrading their quality using additive randomized Gaussian
speckle noise. These degraded images were fed back into the classifier to
observe performance degradation. SNR was calculated using a 20 pixel
square region of interest for both signal and background from a set of
representative OCT images (Eq. 2). Current data empirically suggests that
55 dB is the approximate lower limit before fitting and classification
performance begins to seriously degrade as demonstrated in Supplemen-
tary Fig. 2, while ~80 dB and above is optimal.

SNR ðdbÞ ¼ 20 log10
ISignal ROI;mean

σBackgroundROI

� �
(2)

A minimum resolution for the OCT system is difficult to define, as the
features of interest for classification must be detected and discriminated
between each classification group, such as sparsely scattering MEF or thin
biofilm structures. Still, in the current implementation, it was again
empirically determined when degrading OCT image resolution using a
Gaussian blur function that the resolution can be as low as 12.5% of the
original system resolution (effectively 19.2 μm, originally 2.4 μm) and still
achieve adequate classification results, although overestimating the
severity of present features due to the reduced resolution. This is visually
demonstrated in Supplementary Fig. 3. However, as more data and
classification groups are added for more complex pathology, higher
resolution is typically always beneficial.
Digital otoscopy images should show as much of the TM under sufficient

yet non-saturating illumination as possible, ensuring the same lighting
spectrum is used (cool, warm, etc.) across imaging sessions and subjects. In
practice any otoscope or surgical microscope image could be used.
Quantitatively, the saturation value (S channel in the HSL color scale)
should be >10% but <95% to ensure accurate color detection. These
values ensure the color spectrum does not contain dim and gray (lower
bound), or overly saturated (upper bound) data. Standard-of-care protocols
do not call for the removal of earwax unless it significantly impedes
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assessment of the TM and middle ear.78 Still, the physical removal of
earwax is suggested, if possible, to collect higher quality digital otoscopy
images. Software-based algorithms are being developed that can alleviate
this need and segment out earwax from images,74,79 although complete
blockages do sometimes occur and require removal.

Radial OCT depth profile extraction
Axial thickness of ear structures for each A-line was initially calculated by
finding the distance between the first and last peak in the current A-line
position (Eq. 4).

Peak positions at : ðxm; yn;TopÞ; and ðxm; yn;BotÞ (3)

Axial distance ¼ yn;Top � yn;Bot (4)

Although straightforward to implement, axial thickness does not always
accurately quantify a naturally curved TM, shown in Supplementary Fig. 4A,
which depending on the scan geometry of the subject and handheld OCT
probe, could also be angled within the OCT image. As B-mode OCT images
were available, an alternate method was developed.
Radial thickness takes advantage of information from adjacent A-lines in

an OCT B-scan to detect and calculate thickness through a point normal to
the tissue surface. Each A-line is now run through the peak-finding
algorithm (using the 50 pixel threshold as before) to find the top edge of
the tissue using the first peak, where a point is added to a mask image in
the same location if it is within a separation window, described below. As
each A-line is processed, a point-cloud like mask is generated for the top
line. The final outline of a representative scan is shown in Supplementary
Fig. 4B.
As this algorithm traverses each A-line, each point must be within a fixed

separation window from the previously identified point:

ðxm; ynÞ ! ðxmþ1; ynþ1Þ;Δy < SeparationWindow (5)

The surface of the TM is relatively flat when comparing adjacent pixels,
even after window averaging. Adjacent points that vary wildly are likely
due to a misidentification in the peak-finding algorithm. If no peak is
detected, or a peak is detected outside this separation window, it is
discarded and the separation window on the subsequent iteration
dynamically increases until a new peak is found. This behavior prevents
failure from occurring when processing slightly obscured regions of tissue,
discontinuities in tissue surfaces, or in regions of low SNR, which often
occur during imaging if the ear canal or earwax partially obscures the
cross-sectional OCT beam. Once a point is eventually found on a
subsequent iteration, the separation window is reset to its original value.
Once the top point mask is generated, the mask is thresholded using the
original intensity image to reduce the effect of outlier points, and a 4th

order polynomial is fitted to this line (Eq. 6), which tries to find the average
path through these points, and is set aside as yTop.

yTop=Bot ¼ Ax4 þ Bx3 þ Cx2 þ Dx þ E (6)

The bottom point mask and fitted curve is similarly created (Eq. 6),
instead using the last detected peak, and using a separation window with
a starting value three times greater than the top curve. This allows for
proper detection of points in deeper areas of the image where sparse
scatterers, detector roll-off, and low SNR play a larger role than near the
zero-delay or top of the image in the OCT system. Functionally, this
ensures areas of low-scattering fluid in OCT images are more likely to be
detected. The fitted curves for both sets of points is shown in
Supplementary Fig. 4C.
Once these two polynomial curves are generated, the radial thickness of

each A-line is calculated by translating across each point on the top line,
using these known points (x1:m,Top, y1:n,Top) to find a solution on the bottom
curve. This occurs in one of two ways depending on the curvature local to
each point. First, a normal line from the top curve is calculated (Eqs. 7 and
8), and intersection point(s) with the bottom curve are identified if possible
(Eq. 9). The radial thickness (Eq. 10) ensures that the thickness of this
region of tissue is more accurately mapped. Empirically, this has been
found to be more accurate and have a lower standard deviation across the
tissue than the axial thickness, as shown in Supplementary Fig. 4D. While
each point on the top curve has a solution on the bottom curve, the points
demonstrating fitting in Supplementary Fig. 4C, D have been

downsampled for display purposes.

mNormTop ¼ � ∂ðyTopÞ
∂x

� ��1

(7)

yNormTop � yn;Top ¼ mNormTopðx � xm;TopÞ (8)

Solve ! ðxsolution;Bot; ysolution;BotÞ; yNormTop � yBot ¼ 0 (9)

Radial distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm;Top � xsolution;BotÞ2 þ ðyn;Top � ysolution;BotÞ2

q
(10)

If no solution exists within at the current position along the top line, a
second method is employed to find the closest point on the bottom curve.
Typically, this occurs when the point of analysis on the top line is near the
edge of the imaging window, and a normal line from the top curve
doesnot have sufficient space to intersect with the bottom curve. In this
case, the shortest distance is found from the analysis point to the bottom
curve (Eqs. 11 and 12).

dist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xmÞ2 þ ðyBot � ynÞ2

q
(11)

Solve ! ðxsolution;Bot; ysolution;BotÞ; ∂ðdistÞ
∂x

¼ 0 (12)

The distance to the analysis point is then computed (see Eq. 11), and
is compared against both the equivalent axial thickness value for this
same position (see Eq. 4) and the thickness value from the previous
iteration dist((xm,Top, yn,Top) → (xsolution−1,Bot, ysolution−1,Bot)) if it exists. The
minimum of these three values is then selected. A final check analyzes
slope of the top line. If it is near 0, this indicates the analysis point is near a
peak or valley and ensures the axial thickness is used.
This second part of the fitting process prevents some A-lines, typically

near the edge of the image, from fitting to image data that would stretch
past the edge of known data, and instead locks to the corner point on the
bottom line. However, this may lead to an improper characterization of
thickness. While the function of the lines that define the segmented area
could still be calculated past the image boundaries, the points in these
regions are undefined and could lead to significant errors. A comparison of
these methods is shown in Supplementary Fig. 5. Ignoring these edge
points reduces the overall dataset size by 20% (from 25,479 to 20,327
entries overall) and does not change the measured thickness values
significantly. However, loss of data in this limited database will
detrimentally impact short-term future performance, especially consider-
ing the overall accuracy of this platform was not significantly improved
from this change. As shown in the plot in Supplementary Fig. 5, the data
with edge A-lines removed from processing (Orange line) only slightly
reduces overall accuracy when compared against all data (Blue line). As the
current dataset is limited, including as many data points is of immediate
interest to ensure the flexibility and stability of this system. With additional
data added to this classifier database over time, edge case A-lines can
eventually be safely removed without much loss of performance or
accuracy in the future.
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