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Real-time intraoperative diagnosis by deep neural network
driven multiphoton virtual histology
Sixian You 1,2, Yi Sun1,3, Lin Yang4, Jaena Park1,2, Haohua Tu1, Marina Marjanovic1,2,5, Saurabh Sinha5,6* and
Stephen A. Boppart 1,2,3,5*

Recent advances in label-free virtual histology promise a new era for real-time molecular diagnosis in the operating room and
during biopsy procedures. To take full advantage of the rich, multidimensional information provided by these technologies,
reproducible and reliable computational tools that could facilitate the diagnosis are in great demand. In this study, we developed a
deep-learning-based framework to recognize cancer versus normal human breast tissue from real-time label-free virtual histology
images, with a tile-level AUC (area under receiver operating curve) of 95% and slide-level AUC of 100% on unseen samples.
Furthermore, models trained on a high-quality laboratory-generated dataset can generalize to independent datasets acquired from
a portable intraoperative version of the imaging technology with a physics-based adapted design. Classification activation maps
and final feature visualization revealed discriminative patterns, such as tumor cells and tumor-associated vesicles, that are highly
associated with cancer status. These results demonstrate that through the combination of real-time virtual histopathology and a
deep-learning framework, accurate real-time diagnosis could be achieved in point-of-procedure clinical applications.
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INTRODUCTION
Histopathology is the gold standard for tissue assessment in
clinical decision making and in research.1 However, conventional
histological preparation and analysis is known to be time-
consuming and labor intensive.2,3 Because of the need to use
tissue fixation, paraffin embedding, sectioning, and histochem-
ical staining, diagnosis is usually made after a considerable wait
time (days), which prevents intraoperative assessment and
delays treatment plans. While frozen sectioning can accelerate
the histologic assessment of tissue during intraoperative
procedures, the tens of minutes required, and the quality of
the stained tissue sections, are often compromising.4 Therefore,
imaging scientists have put extensive efforts into developing
real-time histopathology and achieved significant advances.5–9

Label-free virtual histopathology is even more attractive for its
real-time imaging capabilities utilizing intrinsic molecular con-
trast.10–12 Based on intrinsic structural, molecular, and metabolic
contrast, label-free virtual histopathology visualizes tissue with
comparable or even richer diagnostic value than conventional
histopathology, and offers the unique potential to do such
imaging in real-time, even in vivo.
These new imaging techniques, however, yield highly multi-

dimensional datasets and involve new and unconventional
biomolecular markers. Interpretation and classification of these
images usually requires thorough visual inspection by an
experienced biomedical engineer, biologist, or pathologist with
extensive knowledge of the target domain. As with conventional
histological images of hematoxylin and eosin (H&E)-stained tissue
sections, interpretation by imaging scientists is labor-intensive,
time-consuming, and susceptible to inter-observer variability.13,14

Efforts have been made to automate this process by feature
engineering and multilayer perceptrons.10 Here, we propose to

further advance this approach by utilizing recent advances in
machine learning, specifically with deep neural nets (DNNs), that
obviate the subjective and intellectually demanding feature
extraction step, for real-time label-free virtual histopathology
images.11,12,15,16

We recently developed a technique for slide-free virtual
histochemistry based on stain-free slide-free multimodal multi-
photon microscopy that simultaneously generates up to four
intrinsic histochemical contrasts (two/three-photon autofluores-
cence for functional, molecular, and metabolic information, and
second/third harmonic generation for structural information) from
in vivo animal and ex vivo human tissue.15 In contrast to
conventional histochemistry, our tetra-modal imaging shows
great potential for fast general-purpose cell phenotyping because
a relatively large number (four) of strictly spatially and temporally
colocalized intrinsic contrasts can be imaged in tissue without
interference. This allows visualization of a variety of cellular and
stromal components in living or freshly excised tissue, including
tumor cells, immune cells, endothelial cells, vasculature ducts,
alveoli, cell niches, blood vessels, and collagen structures in the
same composite image. The capability to obtain such rich
molecular and structural information within seconds makes this
technique an attractive alternative or adjunct to histochemistry in
clinical settings, especially in time-sensitive scenarios such as the
intraoperative assessment of breast tissue during surgical
oncology procedures. To make real-time intraoperative diagnosis
truly viable, computer-assisted analysis is needed to deliver
prompt, reproducible, and accurate tissue assessment of these
multidimensional virtual slides containing new biomarker infor-
mation. No existing tool offers this automated analysis capability
for the above-mentioned technology, but one can recognize the
analogous application that recent and improving computer-aided
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diagnosis (CAD) image processing algorithms have had on
identifying suspicious lesions in X-ray mammography images.17

The main technical challenge in developing such computational
tools arises from the limited available datasets from the new
technology. Furthermore, as with most new technologies, various
degrees of discrepancies in image generation quality exist among
different implementations of the technology. Therefore, an
automated analysis method that can learn specific disease
(cancer)-related features efficiently from limited datasets without
losing the capability to generalize to other diseases or other
imaging systems is greatly needed.
Recent years have witnessed a rapid surge in the development

and demonstration of DNNs.18–24 Relying on a flexible combina-
tion of layers of convolutional masks, variations of DNNs have
demonstrated their potential for diverse tasks and achieved
unprecedented results for classifying, segmenting, and even
synthesizing natural scene and medical images.25,26 Previous
work on classifying traditional histopathology (H&E) images from
non-small cell lung cancer using a DNN showed a superior
accuracy of 97%.14 For breast cancer classification, an accuracy of
83.3% for differentiating between cancer and normal was
achieved by combining convolutional neural networks based on
H&E-stained breast biopsy images.27 With the rich molecular
information afforded by our label-free technology,11,12,15,16,28 a
well-designed DNN is expected to learn from the multimodal
optical signatures and correlations and automate the analysis of
virtual histology in real time (Fig. 1).
This study developed such a deep-learning framework for

virtual histology to enable the workflow of real-time cancer
diagnosis for (but not limited to) the intraoperative assessment of
breast cancer. The framework was developed and tested using
holdout-validation on a dataset generated by applying our
previously demonstrated imaging system to fresh human breast
tissue. To further validate our classifier, we tested it on
independent datasets obtained from a portable intraoperative
version of the system16 using the same imaging physics and
contrast generating mechanisms. To improve the performance of
domain adaptation, custom-designed data augmentation was
introduced to the original laboratory-generated dataset to
improve the generalizability of the DNN model. A physics-based
design that reflects the optical and operating parameters of the
portable system was used to model the quality degradation
associated with the new test images, and to artificially degrade
the original high-quality images, which were then used to retrain

the classifier. This allowed the classifier to achieve a high level of
test accuracy on images from the portable system without
requiring an additional and separate training dataset representing
the system (or more generally, other similar systems). Our study
demonstrates that a DNN model combined with state-of-the-art
multimodal multiphoton virtual histology provides a real-time,
automated, and accurate method for real-time histology that can
facilitate intraoperative assessment as well as pre- and post-
operative diagnosis of biopsies and tissues for breast cancer.

RESULTS
Deep-learning framework for classification
We sought to develop a deep-learning framework for automatic
classification of real-time histopathology and test this model on
independent data obtained using a portable intraoperative
system. For the operating room-based data, we collected 99
images (a total of 25 Mpixels) from 22 cancer subjects and 31
images (a total of 8 Mpixels) from 7 normal subjects. For
laboratory-based data, we collected 69 sets of mosaicked images
(a total of 447 Mpixels) from 14 cancer subjects and 42 mosaicked
images (a total of 323 Mpixels) from 7 normal subjects. Our task
becomes feasible due to the heterogeneity of the tissue
microenvironment within subjects, which allows for model-
training from a large number of small ‘tiles’ representing different
areas of each virtual slide (defined here as a large field-of-view
image mosaicked from tiles from one imaging site), as well as the
potentially dominant molecular changes between subjects.16,29

The challenge is to optimize the accuracy of the model without
risking overfitting. This challenge was addressed by careful design
of training and test datasets, as shown in Fig. 2, including testing
on independent subjects and eventually on independent datasets
from another cohort and another imaging system. To test the
accuracy of our model, the data (122 virtual slides) were split into
three sets based on random shuffling of the subjects within the
same group (cancer and normal): training, validation, and testing
(there was no subject overlap among these three sets). Consider-
ing the size of the input to the DNN as well as the number of
training samples, random cropping was performed in the training
process to generate batches of 256 × 256-pixel tiles from the
original virtual slides, resulting in thousands of tiles. The training
set that was fed into the DNN was comprised of a large collection
of tiles from subjects in the training set, while excluding any data

Fig. 1 Proposed workflow for real-time intraoperative diagnosis during breast cancer surgeries. Instead of waiting days for histological and
histochemical processing, we propose to image the tissue immediately after it is resected, or even directly in the cavity, and then analyze the
images in real-time with a DNN-based classifier, thus generating results (probability of being cancerous) within minutes.

S. You et al.

2

npj Precision Oncology (2019)    33 Published in partnership with The Hormel Institute, University of Minnesota

1
2
3
4
5
6
7
8
9
0
()
:,;



from subjects in the validation or test set. This method maximizes
the size of the training set and avoids training and testing on tiles
originating from the same human subjects, preventing the
classifier from relying on intra-subject correlations between
samples and resulting in inflated estimates of accuracy.

Accurate classification of virtual histology
Based on the framework presented in Fig. 2, a DNN was first
trained to classify cancer from normal tissue using laboratory-
based virtual histology images produced by our previously
published technique.11,12,15 The DNN predicts a cancer versus
normal probability score for each tile, allowing us to create a
heatmap that highlights regions likely to be cancerous in each
image (Fig 3a, b). It is to be noted that a significant portion of
breast tissue is adipocytes for both cancer and normal subjects.
As interpretation of images relies heavily on distinguishing
between tumor, tumor stroma, and normal stroma, label clean-
up before classification is warranted. Thus, we pre-processed all
images by automatic segmentation and excluded adipocytes by
using a popular semantic segmentation neural network, U-Net,20

to reduce the bias generated by adipocytes and to enable
efficient identification of more relevant cancer-associated image
content. All evaluations reported below were obtained based on
pre-processed training, validation, and test sets containing tiles
that were not dominated by adipocytes (<50% of the area within
each tile).
The accuracy was assessed both at the tile and slide level.

Similar to previous work,10,14 the per-slide accuracy was obtained
by averaging the probabilities for all the tiles within the slide.
Optimization of the network architecture as well as the tile size
was guided by per-tile statistics (AUC, area under curve). As shown
in Fig. 3c, a ResNet-20-based DNN architecture19 with an input tile
size of 256 × 256 pixels generates the highest test AUC (95.2% per
tile, 100% per slide). The comparison among different tile sizes
reflects the trade-offs between the number of available “inde-
pendent” tiles (smaller sizes provide more tiles) and the field-of-
view (greater tile size allows the model to capture more global
information) in each training session. The superiority of the ResNet
model with tile sizes of 128 × 128 or 256 × 256 compared to 512 ×
512 reflects that the model benefits from a larger training set

while still capturing sufficient cancer-distinguishing features in a
tile. Interestingly, as shown in Fig. 3c, on the per-tile level, a false
positive prediction is highly associated with normal ducts and
vessels in normal tissue, while a false negative call is usually found
in cancer tissues that are mostly collagen fibers with no visible
abnormalities (angiogenesis, vesicles, etc). On the per-slide level,
however, these errors are eliminated by aggregating the predicted
scores of all the tiles within the slide, which showed the
importance of the “big picture” view of the classifier—a
comprehensive view of the microenvironment in addition to the
micron-level details within each tile. It appears that the main
reason for the false sensitivity is the intrinsic scarcity of vessel- and
duct- structures in the normal tissue, as well as the limited field-of-
view of the environmental context. There are two potential
approaches that can further improve the algorithm. First,
combining local environmental details and a more global context
in the training process will help the network learn both the greater
perspective as well as the details that are correlated with cancer
diagnosis. This can be achieved by incorporating a downsampled
image of the entire slide (context) with the original multi-channel
tiles (local details) if given more independent subject numbers in a
future study. Second, including more normal ducts and vessels in
the normal training dataset will reduce the false positive rate of
the algorithm. This modification will penalize the direct associa-
tion of ducts and vessels with cancer and avoid the bias
introduced by the imbalance of data complexity between the
cancer group and the normal group (Fig. 4).

Accurate classification of independent intraoperative data
demonstrates generalizability of the DNN model
We next subjected the above methodology to a stronger test of
utility by evaluating the classifier on independent datasets
collected from a recently developed portable system that can
be deployed in more demanding operating room settings.16 This
intraoperative dataset shares the same imaging mechanism and
content (harmonic generation and autofluorescence) as the
laboratory-based dataset used above. However, due to the
engineering, design, and performance trade-offs that were
needed to construct a compact and portable imaging system,
image quality is lower than the laboratory-based system, with
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Fig. 2 Deep-learning framework for training and evaluating a model to recognize cancer tissue from normal tissue. Subjects were randomly
divided into three sets: training, validation, and test sets. Each subject was represented by multiple virtual slides, and each slide was sliced into
smaller ‘tiles’. Model selection was done based on the performance in the validation set. After learning and selection, the model was applied to
tiles in the previously unseen test data. This produces a heatmap of each slide showing the confidence of the model in each tile being
cancerous. Per-tile accuracy was obtained from this heatmap (across all slides from test subjects) and per-slide accuracy was obtained by
averaging tile-level predictions across the entire slide.
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confounding factors such as bright ambient light in the operating
room and limited acquisition time, compared to the
laboratory-based datasets, which were acquired from a high-
end, custom-built microscope11,12,15 in a totally dark, well-
controlled setting. Due to these multiple trade-offs, direct
application of the trained DNN from the previous section results
in an AUC of 53%, only marginally better than a ‘coin toss’ call. This
mediocre ability to adapt is in sharp contrast to human perception
—human brains have little difficulty recognizing patterns in
previously unseen lower-quality images after being ‘trained’ on
high-quality data. We thus hypothesized that by adding human
intuition of this quality difference into the model-training process,
we can potentially improve domain adaptation without the model
having ‘seen’ the new data.
We adopted a physics-based learning strategy to achieve our

goal. First, considering the difference in system design and
operation between the two datasets, data augmentation with the

purpose of artificial degradation was introduced to the original
high-quality laboratory-based image data by modelling difference
in point spread function (PSF), floor vibrations, ambient light
noise, and spatial sampling rate (see Methods). Most importantly,
downsampling was used to reduce dependence on local features,
and thus to improve robustness for real-life data, which resulted in
an AUC of 69.7%. In addition, artificial degradation was added to
the original laboratory-based data to mimic real-life data, which
resulted in an AUC of 60.7%. Finally, a DNN model was trained on
the augmented laboratory-based data (downsampling+ degrada-
tion), and applied to the independent intraoperative dataset,
achieving 81% AUC (per tile and per slide). Given that the new
datasets were acquired using a totally different system and in an
active clinically-driven intraoperative setting, these results are
encouraging as they reflect the potential generalizability of the
classification method, and the broader applicability of this
approach to different diagnostic scenarios. The artificial
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cancer and two normal slides. b Classification results corresponding to the multiphoton images in a. The cancer probability map was coded
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filled adipocytes were segmented out (blue mask) as a preprocessing step prior to classification. c AUC statistics on test set, for different model
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oval) and false negative (cancer tiles classified as normal, highlighted by the yellow oval). Scale bar: 200 µm.
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degradation was based on a few well-established physical
principles for characterizing image quality, rather than an
elaborate highly parameterized model, thereby arguing for its
feasibility in future cases of domain adaptation.

Interpretation of the DNN classification model
In search of an intuitive understanding of the image features
used by the trained DNN, we first extracted for each sample tile
the neuron activity profile in the penultimate layer of the
network. This 512-dimensional vector acts as input to the final
neuron that makes the decision to classify the image as cancer or
normal, and may thus be considered as a compact representa-
tion of the image that captures its salient features for discerning
its class. We further compressed these representative vectors of
images into a two-dimensional feature space using t-SNE,30 and
created a scatter plot where each image is placed at the location
determined by its two-dimensional t-SNE projection. This allows
us to visualize the collection of images on a ‘canvas’ where
images are clustered by their mutual similarity as defined by the
DNN. We can see in the resulting plot (Fig. 5) that the DNN tends
to cluster tiles with similar optical signatures and shapes. Tiles of
green collagen fibers (lower left), yellow elastin fibers (center
left), and blue vesicles (upper right) are located in separate
clusters. For the t-SNE plot presented in Fig. 5, traditional
Euclidean distance with perplexity 30 was used. The t-SNE
representations used in this paper demonstrated reasonable
stability when testing with different parameters for optimization
and datapoints, as shown in Supplementary Fig. 1 and
Supplementary Notes.
To better understand which pixels and spatial patterns

influence the final decisions by the DNN, we used a discriminative
localization technique called Classification Activation Mapping
(CAM) that provides insights into the regions of interest in this
classification task.31 CAM highlights the regions in the original
image that contribute to a positive (cancer) class prediction by
the DNN, thus drawing our attention to discriminative regions in
each image. We observe (Fig. 6) that the high activation regions
frequently correspond to objects indicative of clusters of tumor

cells, vesicles, vessels, and ducts, which is in concordance with
our previous observations.29 In contrast, collagen fibers and lipids
are seen to have much lower association with cancer, which is
understandable due to their extensive presence in both normal
and cancer tissues. This visualization helped ensure that the
trained models, with their numerous parameters, capture
interpretable features that are reasonable in light of prior
knowledge of cancer biology, and also helped discover potential
patterns for cancer characterization. More work needs to be done
in the future to further explore the features and patterns used by
this and other DNNs.

DISCUSSION
This study developed a deep-learning framework for label-free
virtual histology, with the ultimate goal of enabling real-time
intraoperative diagnosis of breast cancer. We demonstrate that
such a prediction framework can accurately discriminate cancer
samples from normal ones, even when trained with modest sized
datasets. We are particularly encouraged by the high accuracy in
differentiating Stage I invasive ductal carcinoma from normal
human breast (97% accuracy), which can be challenging for
conventional diagnosis based on H&E (reported under-
interpretation of 13% and an overall concordance rate of 75.3%
among pathologists).32 An important challenge overcome was
that of significant difference in image quality between laboratory-
acquired image data and intraoperatively-acquired image data,
with the latter obtained from a different, portable version that still
utilized the same underlying nonlinear optical physics and
imaging technology. We addressed this challenge of domain
adaptation to intraoperative images by introducing physics-based
intuition into the model-training phase, without extra cost of new
data, similar to recent reports on the benefit of physics-based
learned models.33 In addition to cancer/normal classification,
precise cancer staging is of important clinical interest due to its
impact on prognosis and treatment. With larger datasets in the
near future, the presented framework can be easily adapted to
the staging task as the DNN can be exposed to more of the
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diversity and the heterogeneity correlated with specific cancer
stages.
Our study demonstrates that a DNN model combined with a

state-of-the-art stain-free slide-free virtual histology platform
may provide a real-time, automated, and accurate method for
real-time histology that can facilitate intraoperative assessment.
However, we also would like to point out several practical
considerations for clinical adoption of this approach. First, as
demonstrated by other clinical studies using nonlinear excita-
tion, laser safety needs to be rigorously investigated.34 We have
performed continuous hour-long imaging on living animals
without observing laser-induced damage.15 More systematic
analysis of potential laser-induced damage needs to be
performed for human tissue before final adoption. Second, the
cost of this imaging system is indeed higher than conventional
microscopes ($80k vs $8k). However, the high cost of this
current setup is mostly due to the requirement of a femtose-
cond laser, which is highly likely to drop in cost due to the
prospering industry of femtosecond fiber lasers.35 Finally,
additional operational readiness requires active engagement
of all the key stakeholders, which is challenging, given the
history of 20 years of development and adoption of digital
pathology.36,37 Despite these challenges, the adoption and use
of this technology is promising, due to the rapid growth,
integration, and impact of the machine learning and medical
engineering communities.38,39

METHODS
Virtual histology image datasets
Laboratory-based virtual histology images were collected by a custom-
built benchtop multimodal multiphoton microscope from fresh human
breast tissue (normal: 7 subjects, 42 virtual slides; cancer: 12 subjects, 69

virtual slides).11,12 Independent intraoperative images were collected by a
portable imaging system from resected fresh human breast tissue in the
operating room (normal: 7 subjects, 31 virtual slides; cancer: 22 subjects, 99
virtual slides).16 This study was conducted in accordance with a protocol
approved by the Institutional Review Boards at the University of Illinois at
Urbana-Champaign and Carle Foundation Hospital, Urbana, IL. All human
tissue samples were obtained from subjects who preoperatively provided
written informed consent permitting the investigational use of their tissue.
Normal breast tissue samples were obtained from female subjects with no
history of cancer who were undergoing breast reduction surgery.
Cancerous breast tissue samples were obtained from female subjects
diagnosed by a board-certified pathologist as having invasive ductal
carcinoma who were undergoing mastectomy or lumpectomy procedures
as part of their standard-of-care treatment for their disease. Histological
slides and pathological diagnoses were obtained postoperatively for labels,
which were used as our gold standard.

Image preprocessing
To remove tiles dominated by adipocytes (low useful information),
adipocytes were first segmented at the pixel level from the original
images using U-Net.20 For this segmentation task, the training set contains
raw 4-channel images and the manually annotated lipid mask (identified
by comparing to conventional histology).

Training the DNN
For experiments related to Fig. 3, we used 50% of the data for training,
10% for validation, and 40% for final testing. This percentage allocation
was selected to maximize the training sets while preserving a number of
completely unseen subjects (randomly selected) for final testing. The input
to the algorithm was the raw four-channel virtual slides (multiphoton
images) together with the labels generated by the lipid segmentation
network and the labels of being diagnosed as cancer or normal (generated
by pathologist). All input images were converted to 8 bit representation
and saved directly onto the GPU memory to facilitate access for the
training process later. During each iteration, a mini-batch of four sets of
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dots (randomly sampled) in a with their original multiphoton image.
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256 × 256 × 4 (or other tile size) tiles was randomly cropped from randomly
chosen virtual slides for both cancer and normal groups on the condition
that the chosen tile was not dominated by adipocytes (determined by the
input lipid segmentation mask). The loss function was defined as the cross
entropy between the ground truth (labels by a pathologist) and the
predicted probability. An Adam optimizer was used for iteration steps, with
a learning rate of 0.0005, weight decay of 0.9, momentum of 0.999, and
epsilon of 1 × 10−8. The DNNs included in this study were based on
ResNet-2019 and Inception v3.40

Adapting the model to new independent intraoperative datasets
To simulate the image artifacts and degradations associated with the
intraoperative portable system and to apply them to the high-quality data,
we first convolved the laboratory-based data with the measured PSF (with
a full width half maximum 10% larger than the original system) of the
portable system, which essentially blurred the images to a similar degree
shared by the intraoperative data. Ambient light was modelled by additive
white Gaussian noise for each individual channel based on prior
knowledge of the measurement of the spectral response to the room
light in the operating room.41,42 In addition, random shifting of pixels and
lines was applied to the raw images to mimic floor vibrations in the
operating room setting. Finally, to shift the attention away from local
features and to more global features, as well as to compensate for the
lower spatial sampling frequency of the intraoperative data, down-
sampling by a factor of four was applied to both laboratory-based and
intraoperative data in the training and testing process. The final input tile
was 128 × 128 pixels with the field-of-view of 512 × 512 μm2.

Statistical analysis
The performance of the classifier was assessed using a testing set, which
contained virtual slides from independent subjects that were never seen in
the training or validation sets. The ROC curves and AUC were computed
using Matlab.
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