

Life-Cycle based Pavement Friction Management and Treatment Selection for IDOT and Local Roadways

Run Hu and Yanfeng Ouyang
University of Illinois at Urbana-Champaign

(Joint work with Babak Asadi, Renan S. Maia, Ramez Hajj, Hao Wang, Priscilla Tobias, and John Senger)

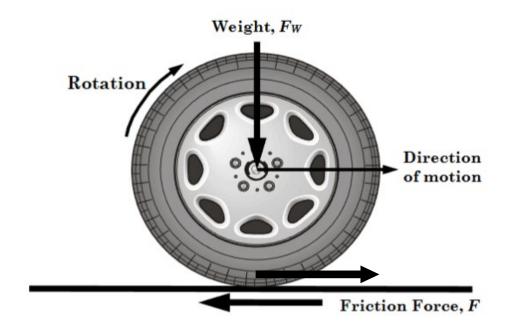
Acknowledgments

This research was sponsored via Project R27-264 by

- Illinois Center for Transportation (ICT)
- Illinois Department of Transportation (IDOT)

Technical Review Panel(s):

- John Senger (chair)
- Katherine Beckett
- Doug Keirn
- Michael Short

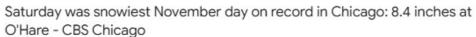

- Dylan Specht
- Jewell Stone
- William Warfel

References

- Hu et al. (2025). Systematic Approach to Illinois' Pavement Friction Management.
 - Accepted for presentation at the Transportation Research Board Annual Meeting (TRBAM 2026);
 - Presented at the AASHTO Safety Summit 2025.
- Hu et al. (2024). Network-Level Pavement Management Based on Safety Evaluation and Friction Demand Analysis: An Illinois Case Study.
 - Presented at the Transportation Research Board Annual Meeting (TRBAM 2025);
 - Presented at the 9th Road Safety and Simulation (RSS25); and
 - Presented at the AASHTO Safety Summit 2024.

- Pavement friction force resists the relative motion between a vehicle tire and a pavement surface.
 - Allows drivers to control their vehicles in a safe manner both longitudinally and laterally.
 - A key input in highway geometric design, influencing stopping sight distance, curve design, and speed selections.
- The amount of friction needed on roadways varies greatly across the network: site geometrics; traffic condition; vehicle characteristics...

Adequate friction is critical for safe vehicle maneuvering, particularly on curves, ramps, intersections, and during emergency braking.



November 29, 2025



On November 29, 2025, a massive 45-vehicle pileup occurred on I-70 near Terre Haute, Indiana, caused by a sudden heavy snow squall that slashed...

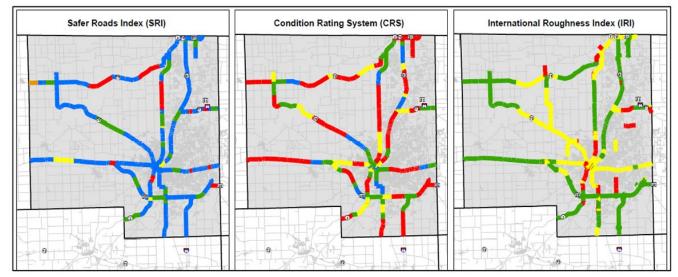
- Many factors influence crashes, but empirical research consistently shows that wet-weather crashes increase sharply as pavement friction decreases (Schulze et al., 1976; Viner et al., 2004).
- Crash risk rises significantly when friction falls below critical intervention levels (Kuttesch, 2004).
- Friction directly affects hydroplaning speed a key factor in preventing wet-weather skidding.

Maintaining adequate friction is essential for reducing wet-weather and curve-related crash frequency and severity.

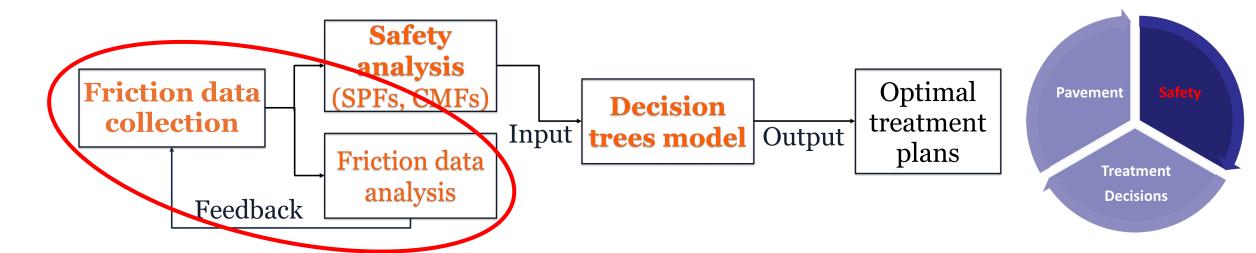
Source: Rizenbergs et al., 1973

- FHWA recommends Pavement Friction Management (PFM) to obtain systemwide insights into friction-related safety and pavement management.
- It is important to link pavement friction to traffic safety and help prioritize treatment decisions.
- However, friction—safety relationships vary greatly across region, climate and operational conditions.

Many states currently lack a systemic PFM program tailored to its own safety conditions and asset management needs.



- IDOT and many agencies have made progressive efforts on driving trafficrelated fatalities and severe injuries towards zero:
 - Illinois statewide SPFs and CMFs
 - Safety Tiers and Safer Roads Index (SRI)
 - IDOT HSM tools
 - Economic analysis programs.
- Traditionally, friction treatments are selected based on pavement conditions, material availability etc., without considering safety benefits.
- Opportunity to develop a systemic program for pavement friction measurement, analysis, and treatment selection, that is well-integrated into pavement asset management.


IDOT, Illinois Improves Transportation Decision Making Through Safer Roads
Index (SRI) Ratings and Safety Tiers

2015 FIVE PERCENT Report: Segment Safety Tiers									
Peer Group	Tier	Max. PSI	K+A	Σ Κ+Α	Σ K+A %	Tier Mileage	Tier Mileage %	Σ Mileage	Σ Mileage %
4. D10	5%	70.0	748	748	25.9%	422	5.1%	422	5.1%
1: Rural 2- Lane	High	40.5	128	876	30.3%	431	5.2%	853	10.2%
Lane	Medium	14.0	348	1,224	42.3%	1,281	15.3%	2,134	25.5%
4: Rural	5%	54.0	457	457	15.8%	76	5.1%	76	5.1%
Freeway	High	24.0	221	678	23.4%	73	4.9%	149	10.1%
4 Lanes	Medium	16.0	111	789	27.3%	224	15.2%	373	25.2%

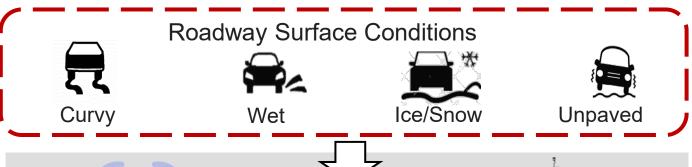
FHWA, Highway Safety Improvement Program (HSIP) National Scan Tour

OBJECTIVES

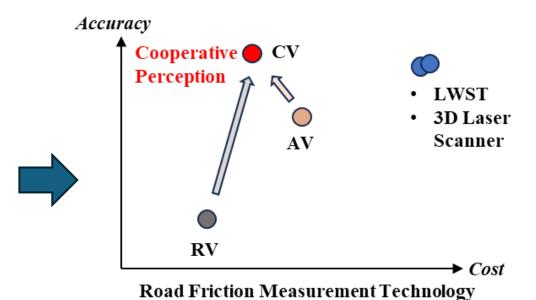
- To develop a comprehensive, systemic, network-level pavement friction management program that supports safer and smoother travel in Illinois, which systematically:
 - i. Evaluates current IDOT friction data collection methods, policies and status;
 - ii. Performs friction-related data and safety analysis;
 - iii. Develops decision tree models for network-level site screening and life-cycle cost analysis, recommending site-specific investigatory thresholds and treatments.
 - iv. Guides treatment decisions that enhance both safety and state-of-good-repair.

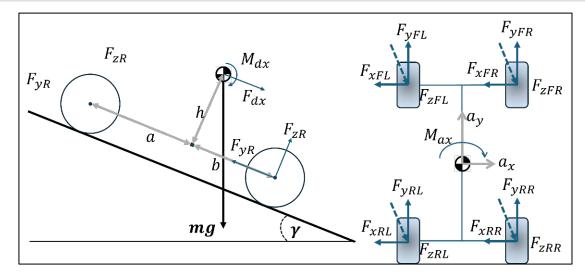
- Skid number (SN) is the typical measurement of pavement friction.
 - SN is currently measured Illinois using a lock-wheeled skid trailer (LWST)
 - The Sideway-force Coefficient Routine Investigation Machine (SCRIM) is used to conduct network-level CPFM in several leading states, e.g., VA, KY, FL, IL
 - 3D laser texture scanning is also common in measuring mean profile depth (MPD) for pavement friction
 - ICT Project R27-247 develops a new friction device for IDOT to collect continuous texture data based on computer vision
 - A recent USDOT-UTC project develops a crowdsourced friction data collection framework using instrumented sensors in connected and autonomous vehicles
- Safety models should be calibrated to be consistent with measurement method.

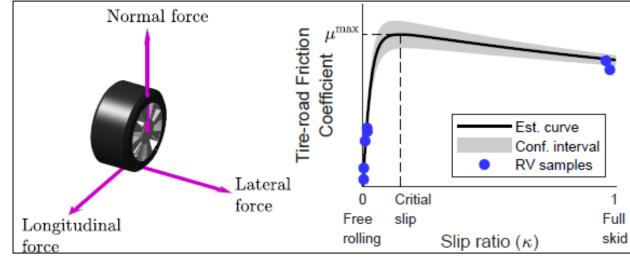
SCRIM truck

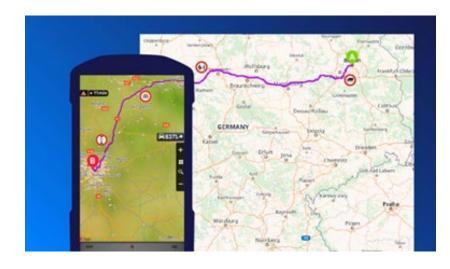


CENTER FOR CONNECTED AND AUTOMATED TRANSPORTATION


(Joint work ICT + UW Madison)

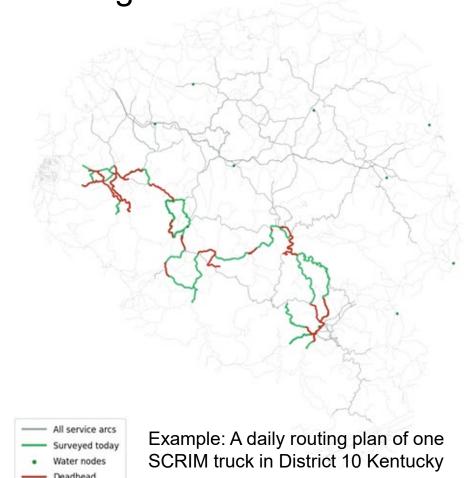

Challenge 1 - Measurement


Crowd-sourced measurement

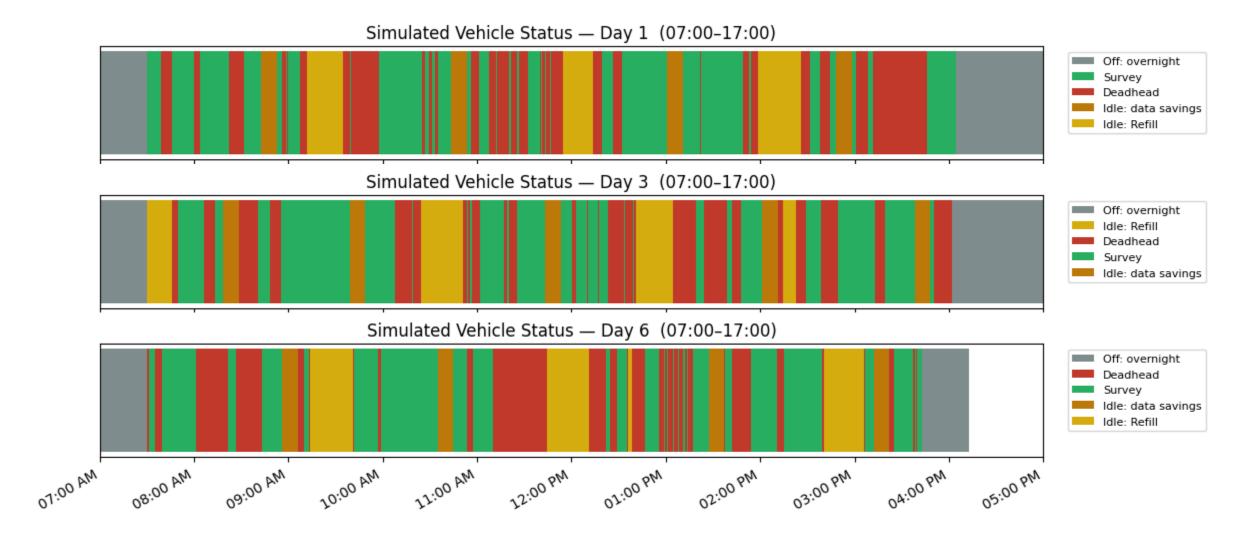

- Illinois friction data are collected with LWST in the past
 - The correlation between LWST vs. SCRIM data is not well established.
 - Cannot consistently relate friction to crash and compare them with those of peer states without a reliable mapping.
- Use Illinois data to calibrate and validate FHWA conversion formulas
 - SCRIM standard at 30 mph (SR30) vs. LWST standard at 40 mph with ribbed (FN40R) or smooth (FN40S) tires.

$$S_{SCRIM} - S_{LWST}$$
 $S_p = a + b \cdot MPD$, where ASTM constants $a = 14.2$ and $b = 89.7$; $MPD = \text{macrotexture mean profile depth (mm)}$ $S_{SCRIM} = 0.34 \times SCRIM \text{ testing speed (km/h)}$ $S_{LWST} = LWST \text{ testing speed (km/h)}$

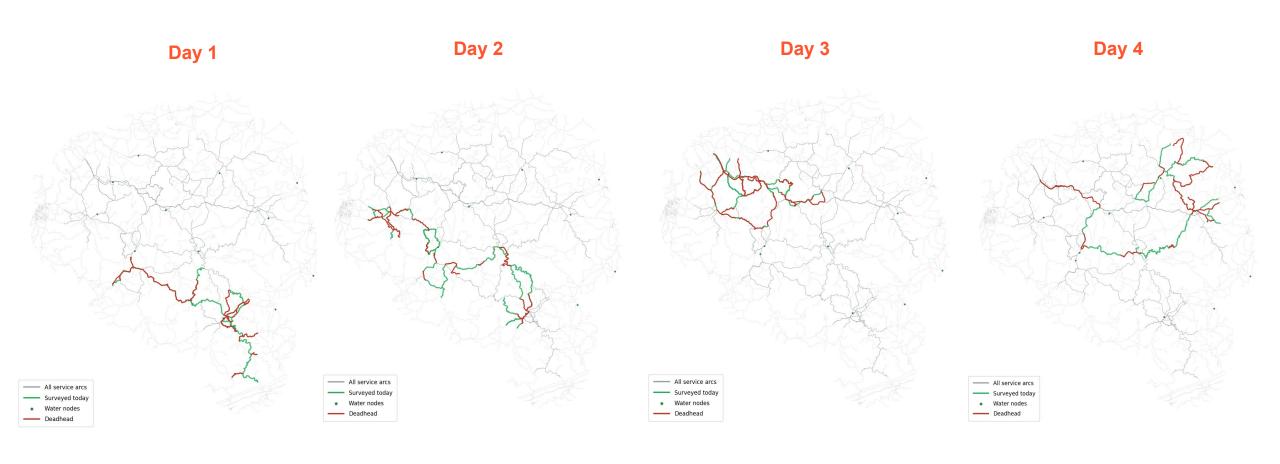
- Current network-level CPFM is costly, timeconsuming, and usually not very efficient.
 - High purchase cost of SCRIM trucks
 - High operating cost for driver salary, wearand-tear, and vehicle depreciation
 - Extensive wasted distance/time for network deadheading and water refills
 - Periodic stops for data processing and storage
 - Driver work hour limits, possible traffic delay


How to design a strategic plan to route the SCRIM trucks to survey all the planned routes with minimum deadheading time and distance.

	District 1		
	Truck 1	Truck 2	
7	Route 1	Route 4	
Day 1 Morning	Route 1	Route 5	
Worming	Refill	Route 6	
	Route 2	Route 7	
Day 1	Break		
Afternoon	Douto o	Refill	
	Route 3	Overnight	


Customized algorithm to network-level SCRIM routing

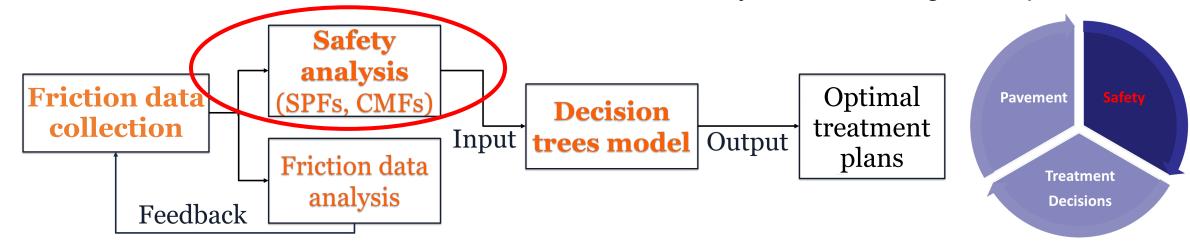
- ☐ Greedy Algorithm to generate an initial solution by mimicking human thinking process
- ☐ Destroy and Repair (DR) meta-heuristic to solve routing problem with water refill constraints
 - Find how trucks should survey the network in sequence to minimize the deadheading travels
 - Determine water tank levels, when and which water station to go
- ☐ Dynamic Program (DP) to recover time-related constraints
 - Satisfy all the other operational & labor requirements: data saving break, overnight parking etc.
 - Minimize the total time needed including travels and breaks



Example of optimized daily trajectory – one small truck for District 10 Kentucky

Example of optimized daily trajectory – one small truck for District 10 Kentucky

Solution comparison


District 10 Results	A leading company's	Small truck		Large truck		
District 10 Results	2024 solution	Greedy solution	DR + DP	Greedy solution	DR + DP	
Deadhead (mile h)	1439.4 36.1	1598.4 39.9	768.0 19.2	1144.0 28.6	676 16.9	
Pure survey (mile h)	971.8 26.0	1116.8 23.9	1116.8 23.9	1116.8 23.9	1116.8 23.9	
Other: refill, data etc. (h)	21.5	12.9	12.8	12.1	12.6	
Total working (mile h)	2411.1 83.7	2715.2 76.8	1,884.8 55.9	2,260.8 64.7	1,792.8 53.4	
Total # of veh-day	8.8	8.1	5.8	6.8	5.6	
% deadhead time saving	-	-	46.80%	-	53.00%	
% total time saving	-	-	33.20%	-	36.20%	
Est' mileage saving	-	-	671	-	763	
Computation time	-	1 sec	1h9min	1 sec	3h34min	

Note: Our results are based on the entire planned network with 1116.8 mile, and we enforce 1 hr deadhead to/from hotels everyday, which adds 40 miles of deadhead distance daily.

- Our greedy solution has similar performance as the company's benchmark solution.
- Our optimized solution can reduce 670+ miles of deadheading distance, equivalently, save **about half** of the time spent on deadheading travels for District 10.

OBJECTIVES

- To develop a comprehensive, systemic, network-level pavement friction management program that supports safer and smoother travel in Illinois, which systematically:
 - i. Evaluates current IDOT friction data collection methods, policies and status;
 - ii. Performs friction-related data and safety analysis;
 - iii. Develops decision tree models for network-level site screening and life-cycle cost analysis, recommending site-specific investigatory thresholds and treatments.
 - iv. Guides treatment decisions that enhance both safety and state-of-good-repair.

Challenge 2 - Safety Analysis

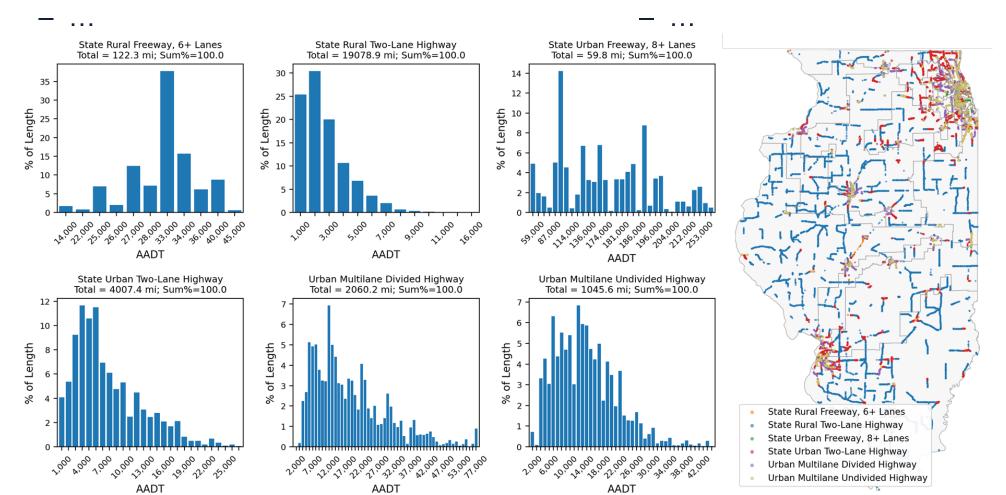
 Develop statistical models to quantify the impacts of pavements friction on safety Roadways segment SPFs

(expected crashes per year) = (segment length)
$$\cdot \alpha_0 \cdot (AADT)^{\alpha_1} \cdot CMF_R(v, R, e) \cdot CMF_{LW}(LW) \cdot CMF_{SW}(SW) \cdot CMF_{SN}(SN)$$

where α_0 , α_1 are parameters, and $CMF_R(v,R,e)$, $CMF_{LW}(LW)$, $CMF_{SW}(SW)$, $CMF_{SN}(SN)$ capture the impacts of curvature, lane width, shoulder width, and skid number, such as the following:

$$CMF_{R}(v,R,e) = 1 + \alpha_{2} v^{6}/R^{2}, CMF_{LW}(LW) = \alpha_{3} e^{LW-12}, CMF_{SW}(SW) = \alpha_{4} e^{SW-8}, CMF_{SN}(SN) = \alpha_{5} e^{SN-40}.$$

Intersection SPFs


(expected crashes per year) =
$$\alpha_0$$
 (Major Road AADT) α_1 (Minor Road AADT) α_2 ·
$$CMF_{\text{Control}} \cdot CMF_{LW}(LW_{\text{major}}, LW_{\text{minor}}) \cdot CMF_{SW}(SW_{\text{major}}, SW_{\text{minor}}) \cdot CMF_{SN}(SN)$$

where α_0 , α_1 , α_2 are parameters, and $CMF_{Control}$ captures the impacts of control types.

 A generalized linear model (GLM) assuming a negative binomial error distribution is used in the regression, together with empirical Bayesian (EB) analysis.

Illinois Peer groups

- 12 roadway peer groups and 7 intersection peer groups
 - Urban/Rural Two-Lane Highways
 - Urban/Rural Freeways
 - Urban Multilane Divided/Undivided Highways
- Urban/Rural Signalized Intersection
- Urban/Rural All-Way Stop Control
- Urban Multilane Minor Leg Stop Control

Six IL roadway peer groups with friction measurement: Mileage distribution by traffic and spatial representation

Challenge 2 - Safety Analysis

Example: Urban Multilane Minor Stop Control: SPFs & CMFs

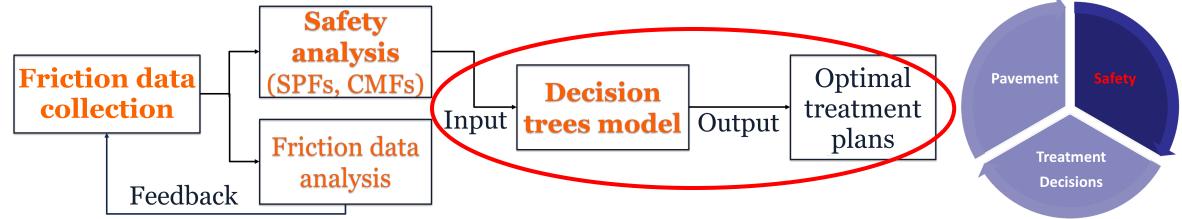
Nanatius Dinamial Danuarian Danulta						
NegativeBinomial Regression Results						
Dep. Variable:		total_crash	No. Observations:			4232
Model:	Neg	ativeBinomial	Df Resi			4222
Method:		MLE	Df Mode			9
Date:	Wed	, 05 Feb 2025	Pseudo			0.03679
Time:		10:35:41		elihood:		-4000.2
converged:		True	LL-Null			-4153.0
Covariance Type	e:	nonrobust	LLR p-v	alue:	1	.679e-60
	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-11.0654	0.790	-14.003	0.000	-12.614	-9.517
lnAADT major	0.6877	0.061	11.205	0.000	0.567	0.808
lnAADT minor	0.6710	0.062	10.837	0.000	0.550	0.792
ma MED WTH	0.0004	0.005	0.088	0.930	-0.008	0.009
ma LN WTH	-0.0298	0.020	-1.523	0.128	-0.068	0.009
ma O SHD 1	-0.0227	0.012	-1.896	0.058	-0.046	0.001
mi_MED_WTH	0.0109	0.009	1.253	0.210	-0.006	0.028
mi_LN_WTH	0.0288	0.006	4.556	0.000	0.016	0.041
mi_O_SHD_1	-0.0371	0.019	-1.999	0.046	-0.073	-0.001
Q25_Avg_FN	-0.0122	0.004	-3.395	0.001	-0.019	-0.005
alpha	1.3021	0.092	14.095	0.000	1.121	1.483

==== Additional Info =====

AIC: 8022.360 Alpha: 1.3021

Alpha 95% CI: [1.1211, 1.4832] Alpha is significant? Yes

```
==== CMF CALCULATIONS =====


    Q25 Avg FN (+10 friction units)

 => Decreases crashes by 11.48%
- lnAADT major (+1000 AADT (baseline=10000))
  CMF = (1.10)^{(0.6877)} = 1.068
(From 10000 to 11000 AADT)
  => Increases crashes by 6.77%
- lnAADT minor (+1000 AADT (baseline=10000))
 CMF = (1.10)^{(0.6710)} = 1.066
(From 10000 to 11000 AADT)
  => Increases crashes by 6.60%
- ma MED WTH (+1 foot)
 CMF = \exp(0.0004 \ 2 \ 1.00) = 1.000
  => Increases crashes by 0.04%
- ma LN WTH (+1 foot)
 CMF = exp(-0.0298 \ 2 \ 1.00) = 0.971
 => Decreases crashes by 2.94%
- ma_0_SHD_1 (+1 foot)
 CMF = \exp(-0.0227 \ \square \ 1.00) = 0.978
 => Decreases crashes by 2.25%
- mi MED WTH (+1 foot)
 CMF = exp(0.0109 \ 1.00) = 1.011
  => Increases crashes by 1.09%
- mi LN WTH (+1 foot)
 => Increases crashes by 2.92%
- mi 0 SHD 1 (+1 foot)
 CMF = exp(-0.0371 \ 2 \ 1.00) = 0.964
  => Decreases crashes by 3.64%
```

OBJECTIVES

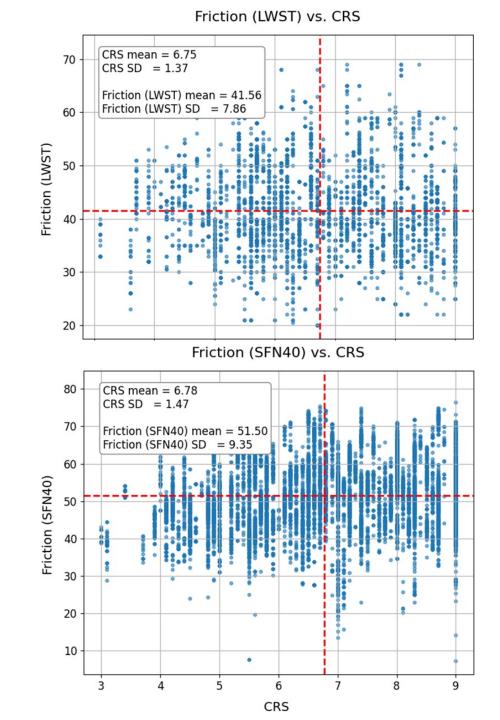
- To develop a comprehensive, systemic, network-level pavement friction management program that supports safer and smoother travel in Illinois, which systematically:
 - i. Evaluates current IDOT friction data collection methods, policies and status;
 - ii. Performs friction-related data and safety analysis;
 - iii. Develops decision tree models for network-level site screening and life-cycle cost analysis, recommending site-specific investigatory thresholds and treatments.

iv. Guides treatment decisions that enhance both safety and state-of-good-repair.

Challenge 3 – Treatment Selection

- Pavement treatments help restore both pavement friction and serviceability performance, and their effectiveness depends on materials, thickness, surface texture, and placement methods.
 - High-performance treatment (e.g., HMA overlay, UTBWC)
 - Improve ride quality (reduce roughness)
 - Restore adequate friction value
 - Seal and protect underlying pavement structure
 - High construction cost
 - Friction-oriented treatment (e.g., chip seal, micro-surfacing)
 - Non-structural layers
 - Provide durable wearing surface
 - Only seal minor surface defects
 - Low construction cost

Sources: The Transtec Group, Inc.


Sources: top: California Chip Seal Association; bottom: The Transtec Group, Inc.

HMA overlay

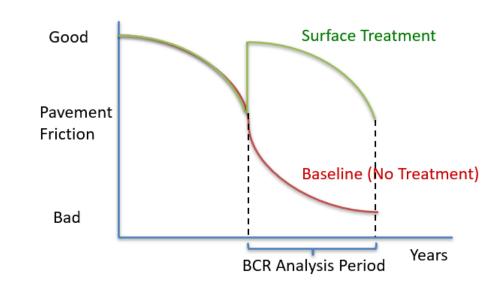
Chip seal

Challenge 3 – Treatment Selection

- Friction vs. Serviceability
 - Friction has not been explicitly considered in the current pavement asset management program
 - Many pavement surface treatments are used in Illinois (HMA overlay, UTBWC, micro-surfacing etc.) improve both friction and CRS
 - □ 2015 FHWA report "Evaluation of Pavement Safety Performance"
 - Pavement friction and CRS values are <u>not</u>
 always positively correlated: low friction + good
 CRS, low CRS + low friction.

Challenge 3 – Treatment Selection

How to make treatment decisions under multiple performance metrics?


Asset Management Interaction of CFME, Safety Tier (PSI), and CRS

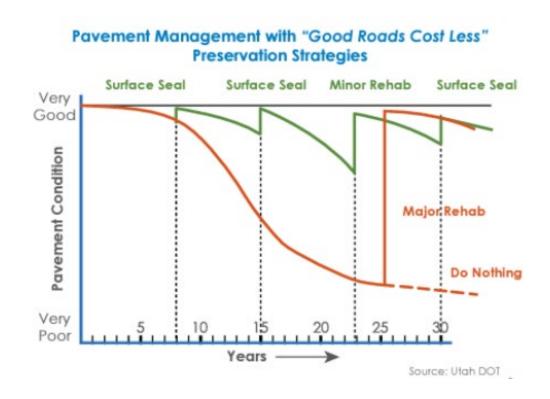
Benefit Cost Ratio (BCR) Method

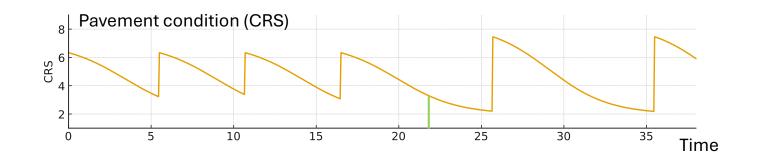
- 1. Identify treatment options
 - Determine expected friction improvement, construction cost, etc.
- 2. Determine comprehensive crash costs
- 3. Predict potential crash reduction
 - Based on estimated SPFs and EB method
 - Determine # of expected crashes that can be reduced if friction treatment is applied
- 4. Compute Benefit-cost (B/C) ratio in an analysis period (e.g., 3-7 years)
- 5. Treatment prioritization
 - Rank the pavement segments by B/C ratio and prioritize treatments accordingly

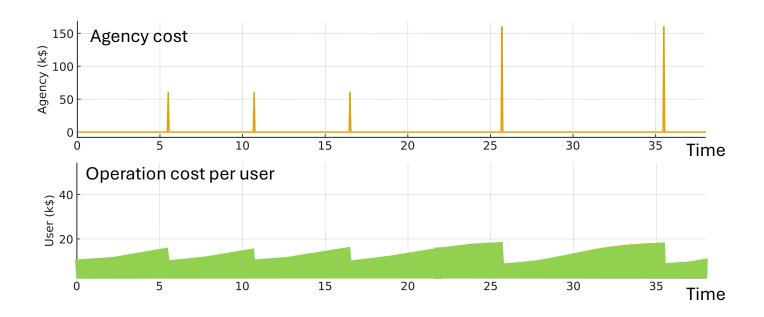
Crash Severity	Crash Count (2012-2014)	NHTSA Cost/Crash (Police-Reported)	Comprehensive Costs
Fatality (K)	430	\$9,962,008	\$4,283,663,520
Injury (A, B, C)	26,921	\$223,510	\$6,017,123,864
PDO (O)	65,094	\$10,644	\$692,883,652
Total	92,445	-	\$10,993,671,036

Source: FHWA-RC-20-0009

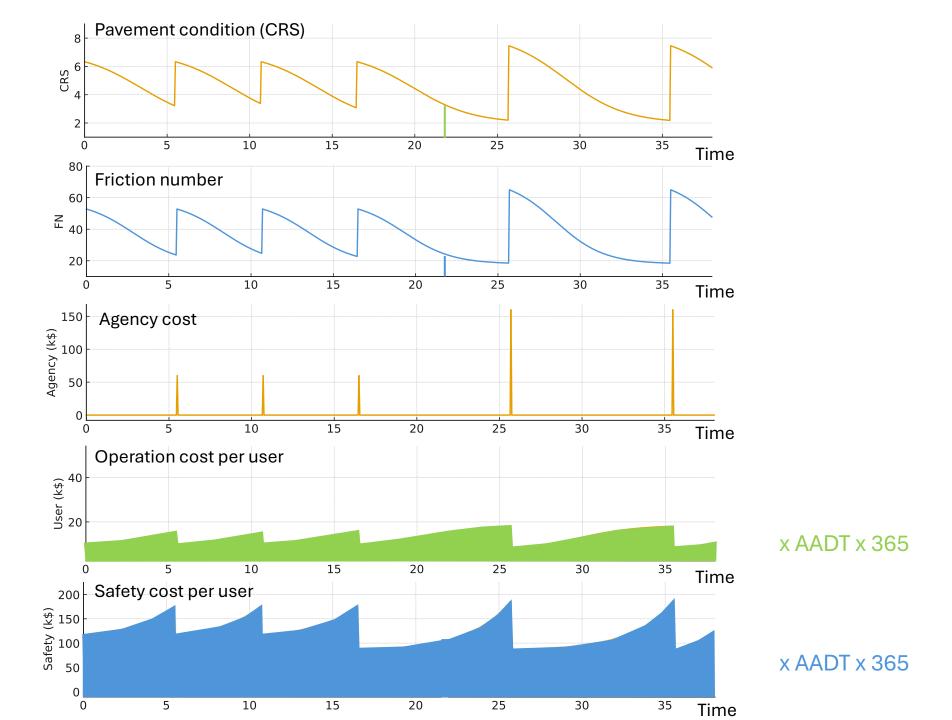
$$B / C = \frac{Monetary Crash savings}{Treatment Construction cost}$$

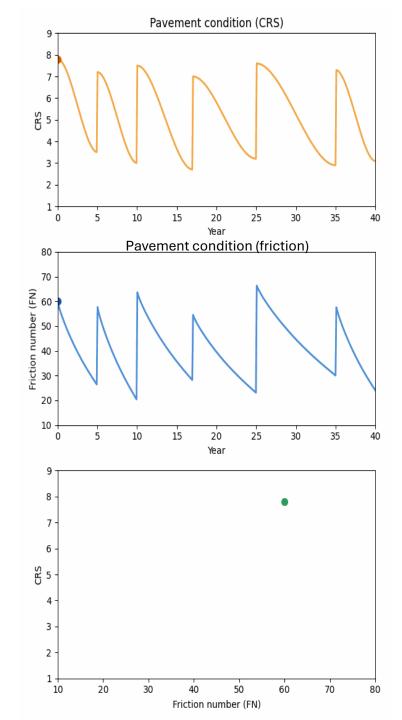

Challenge 3 – Treatment Selection


- Limitations of traditional BCR method
 - Some focuses on safety cost only, or pavement serviceability (CRS/IRI) only
 - Some considers short-term costs/benefits only, ignoring life-cycle impacts
 - Biased towards low-cost treatments (which usually have high BCRs)
 - Prioritizes treatments on worse pavements (likely with high BCRs), ignores the potentials of preventative maintenance strategies.
 - Some uses an arbitrary planning horizon (e.g., 3-7 years for safety, or 10-30 years for pavement serviceability)

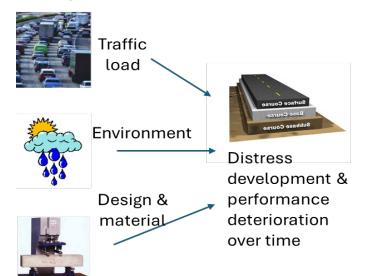


Life-Cycle Cost Approach

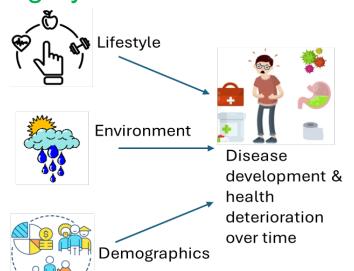

- In an infinite horizon
 - Model the deterioration process of friction and CRS over time
 - Quantify long-term life-cycle (safety) benefit & cost of treatments on improving both friction and CRS
 - Considers interactions of multiple treatments over time
 - Develop site-specific treatment decision trees
- Minimize the overall discounted cost in the infinite horizon.


x AADT x 365

Life-Cycle Cost Approach


- Integrated framework that translate both friction (safety) and CRS (serviceability) into universal "cost \$" representations
 - Categorize highway network segments by facility type (peer group, traffic, etc.)
 - Pavement state (CRS, friction) evolution
 - User cost: safety cost, pavement user serviceability cost
 - Treatment: Minor vs major; friction-oriented vs roughness-oriented
 - Cost vs. effectiveness
- Objective: To find an optimal rule (i.e., policy) that tells IDOT what treatment should be done based on pavement type, traffic, and current friction/CRS values

Example: For an urban 2-lane highway segment with traffic = 3500 AADT/lane, if the current CRS is 4.0, and the current friction number is 30 → Apply micro-surfacing

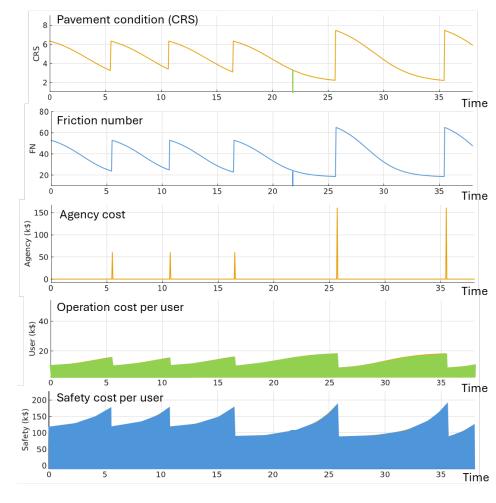


Life-Cycle Cost Approach

- Integrated framework that translate both friction (safety) and CRS (serviceability) into universal "cost \$" representations
 - Categorize highway network segments by facility type (peer group, traffic, etc.)
 - Pavement state (CRS, friction) evolution
 - User cost: safety cost, pavement user serviceability cost
 - Treatment: Minor vs major; friction-oriented vs roughness-oriented

- Analogy to hospital emergency room practice
- Categorize patients by demographics (age, gender, lifestyle, etc.)
- Health state (vitals, pain) evolution
- User cost: risk of complications, patient suffering
- Treatment: Minor vs major; medicine vs surgery

LCCA Framework


- Per unit-length pavement segment
 - Peer group i, traffic load q, CRS s, friction f

state
$$\phi_t = (s(t^-), f(t^-))$$

- Three possible cost components: (i) safety, friction-related, (ii) serviceability, CRS-related, (iii) treatment M_{ri} (\$/lane-mile)

$$C_i(q, s, f) = c_0 + c_1 s + b_i(f, q) (\$/\text{veh-mile}), \quad \forall i, q.$$

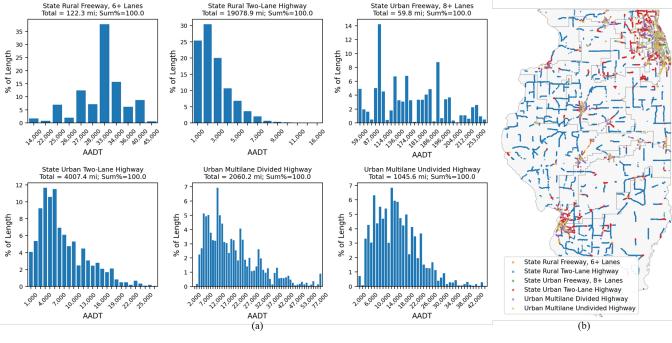
- We can select any treatment (including do-nothing) at each year τ , each with certain cost and restoration effectiveness; denoted a_{τ}
- The pavement state after treatment at year τ will be transitioned to year $\tau+1$ via deterioration
- Solve for the optimal policy (by dynamic programming)
 that minimizes the discounted sum of all costs (discount rate v) over an infinite horizon

$$\min_{\{\phi_{\tau}, a_{\tau}\}} \quad \sum_{\tau=0}^{\infty} z_{\tau} [\phi_{\tau}, a_{\tau}]$$

where one-year cost is

$$z_{\tau} \left[\phi_{\tau}, a_{\tau} \right] = q \int_{\tau}^{\tau+1} C(q, \phi_t) e^{-vt} dt + M_{a_{\tau}} \cdot e^{-v\tau}$$

Model Input


Peer groups: SPFs, traffic load distributions.

Pavement Facility type i	eta_0	eta_1	eta_2
Urban Multi-Lane Undivided Highway	1.194e-4	1.196	4.907e-3
Urban Two-Lane Highway	8.251e-4	0.957	2.313e-3
Urban Multi-Lane Divided Highway	1.394e-4	1.165	1.630e-2
Urban Freeways 6+ Lanes	5.978e-4	1.001	5.322e-2
Rural Freeways 8+ Lanes	4.900e-2	0.432	7.221e-3
Rural Two-Lane Highway	1.299e-2	0.611	1.315e-2

Safety Performance Function Coefficients Note: expected crash rate = $\beta_0 q^{\beta_1} e^{-\beta_2 f}$ for each type. where *q* is traffic (AADT), *f* if friction number

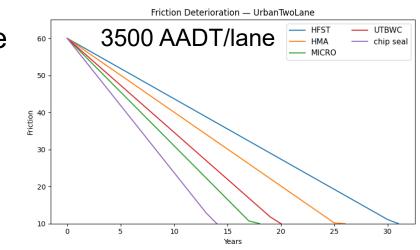
– Cost parameters:

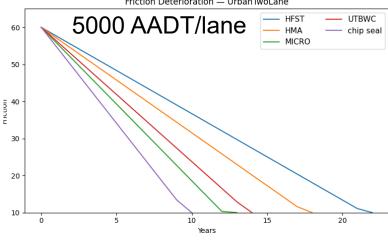
- Safety cost: 169 k\$/crash,
- CRS (User) cost: 4e-6 k\$/veh-mi/CRS

State Rural Two-Lane Highway

Example: One lane-mile Urban Two-Lane Highway segment under 3500 AADT/lane with f=55 and CRS=5 has an expected annual safety cost of 293.8 k\$ (1.74 crashes/yr) and a user cost of 19.8 k\$.

If friction reduces to 30, safety cost increases by 17.5 k\$; if CRS reduces to 3, user cost increases by 9.8 k\$


Model Input


- Deterioration model: how friction deteriorates over time
 - Linear deterioration with traffic load, based on both pavement types, traffic load, and the treatment applied previously \hat{r}

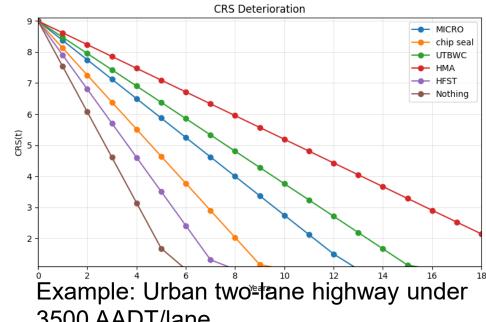
$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} = F(q, \hat{r}) = \begin{cases} -(a_2 + a_{3\hat{r}}q), & f(t) > f_{\min}, \\ 0, & f(t) = f_{\min}, \end{cases} \quad \forall q, t \in (\tau, \tau + 1).$$

Table 1. Friction deteriorate rate by facility type and previous treatment

Pavement Facility type i	1.2-in HMA overlay	20mm UTBWC	0.5-in chip seal	9.5mm micro-surfacing	HFST
Urban Multi-Lane Undivided Hwy	$5.940e{-04}$	$7.560e{-04}$	$1.080e{-03}$	$8.640e{-04}$	$3.240e{-04}$
Urban Two-Lane Highway	$5.692e{-04}$	$7.245e{-04}$	$1.035e{-03}$	$8.280e{-04}$	$3.105e{-04}$
Urban Multi-Lane Divided Hwy	5.445e - 04	$6.930e{-04}$	$9.900e{-04}$	$7.920e{-04}$	$2.970e{-04}$
Urban Freeways 6+ Lanes	$5.198e{-04}$	$6.615 \mathrm{e}{-04}$	$9.450e{-04}$	$7.560e{-04}$	$2.835e{-04}$
Rural Freeways 8+ Lanes	$4.702e{-04}$	$5.985e{-04}$	$8.550e{-04}$	$6.840e{-04}$	$2.565e{-04}$
Rural Two-Lane Highway	$4.455e{-04}$	5.670e - 04	8.100e-04	6.480e-04	$2.430e{-04}$

Example: Urban Two-Lane Highway

Note: All values are derived and adjusted based on Wang and Wang (2013), Susanna et al. (2017).


- Model Input
 - **Deterioration model**: how CRS deteriorates over time
 - Linear deterioration with traffic load, the truck percentage Tr, and the CRS value right after treatment CRS' (ICT Project R27-150: Ozer et al. 2018)

$$CRS = 9.0 - m \times (\alpha_{AADT} \ln(AADT) - \alpha_{CRS'}CRS' + \alpha_{Tr}Tr + \beta) \times t$$

Table 2: CRS deterioration coefficients by treatment

Treatment	m	α_{AADT}	$\alpha_{CRS'}$	α_{Tr}	β
"9.5mm micro-surfacing"	0.90	0.028	0.064	0.17	0.889
"0.5-in chip seal"	1.13	0.046	0.088	0.32	0.920
"20mm UTBWC"	0.60	0.082	0.253	1.02	1.873
"1.2-in HMA overlay"	0.38	0.042	0.118	0.74	1.493
'HFST"	1.01	0.138	0.257	1.31	1.05

Note: All values from Table 3.9. in R27-150 report except for HFST..

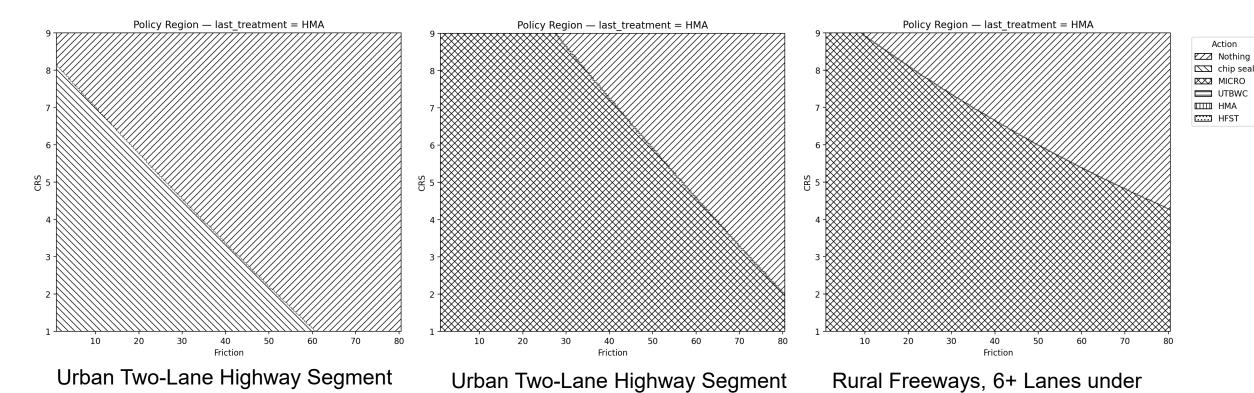
3500 AADT/lane

- Model Input
 - **Treatment toolbox**: construction cost M_r , and CRS and friction value h_r right after treatment

Treatment r	M_r (10 ³ \$/lane-mi)	CRS'_r	h_r
1.2-in HMA overlay	120.0	8.0	60
20mm UTBWC	48.0	7.2	60
0.5-in chip seal	15.0	6.5	52
9.5mm micro-surfacing	25.0	7.0	58
HFST	220.0	5.0	80

Model output

- Mapping from any (friction, CRS) state to an optimal treatment
- Each region corresponds to an optimal treatment, and the "boundaries" give thresholds

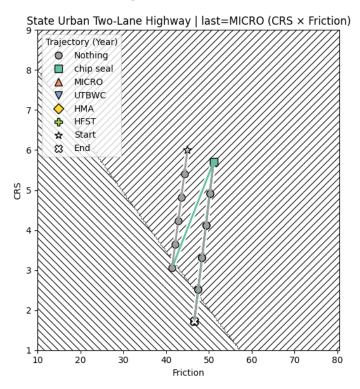

Optimal Policies for Urban Two-Lane Highway Segment under 3500 AADT/lane

Insights: Such a simple mapping can be used to simultaneously screen the problematic sites and determine the most cost-effective treatment.

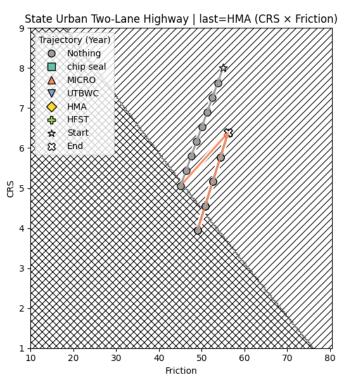
- Threshold boundaries are indication of friction & CRS investigatory levels
- One unique mapping for each pavement type & traffic load range

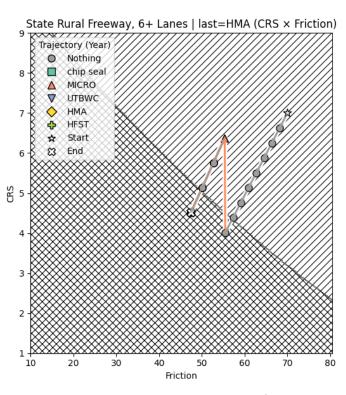
Model output

under 1000 AADT/lane

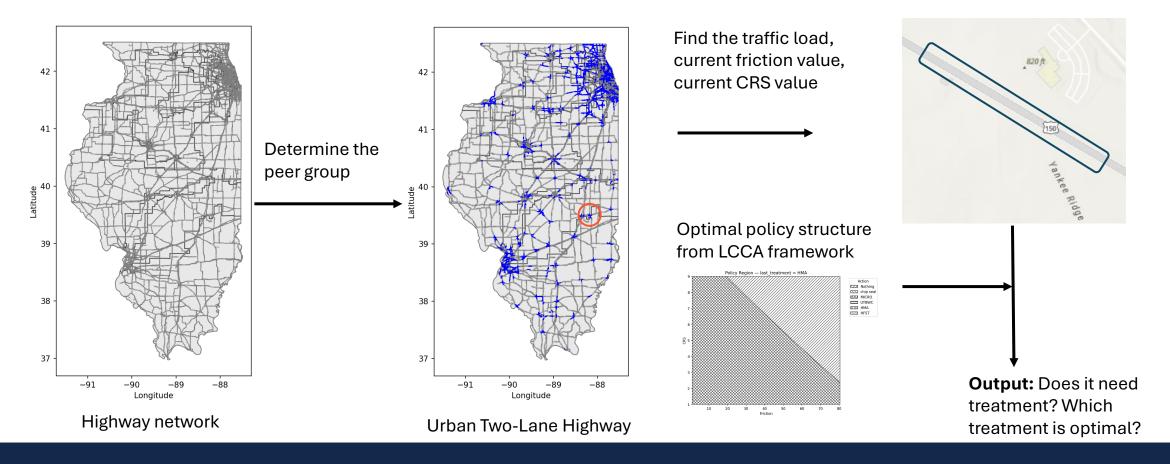


5500 AADT/lane

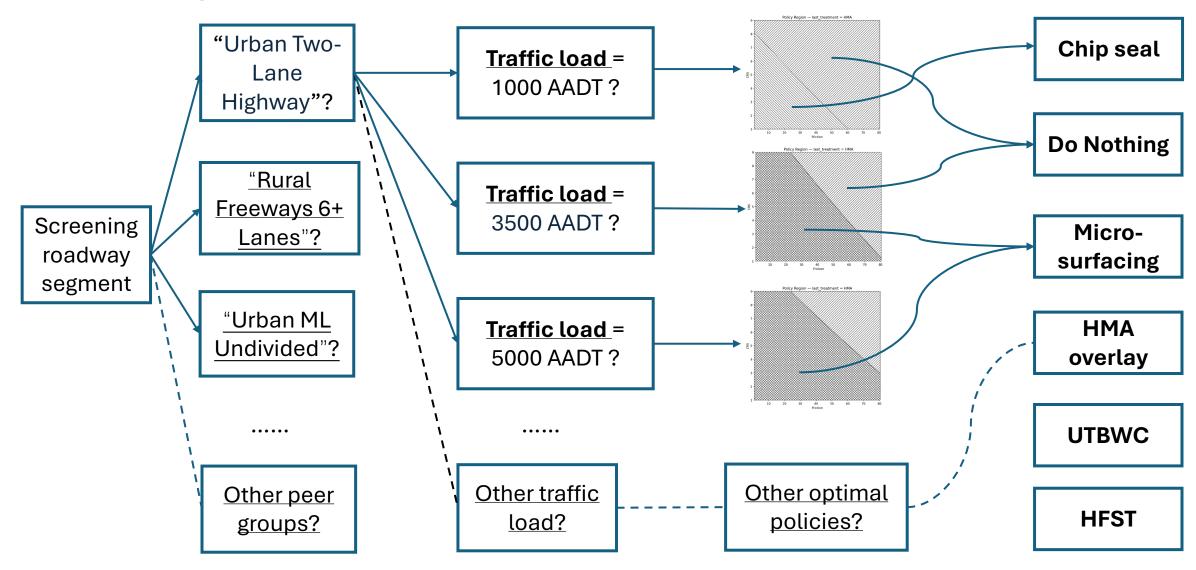

under 5000 AADT/lane


Sample evolution

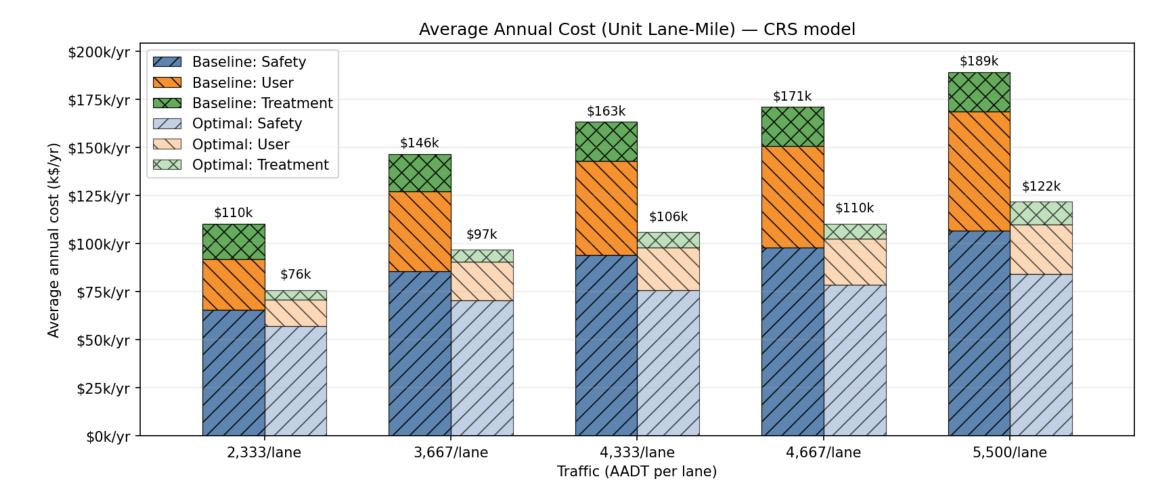
Urban Two-Lane Highway Segment under 1000 AADT/lane


Urban Two-Lane Highway Segment under 2500 AADT/lane

Rural Freeways 6+ Lanes Segment under 3667 AADT/lane



Site screening and treatment selection

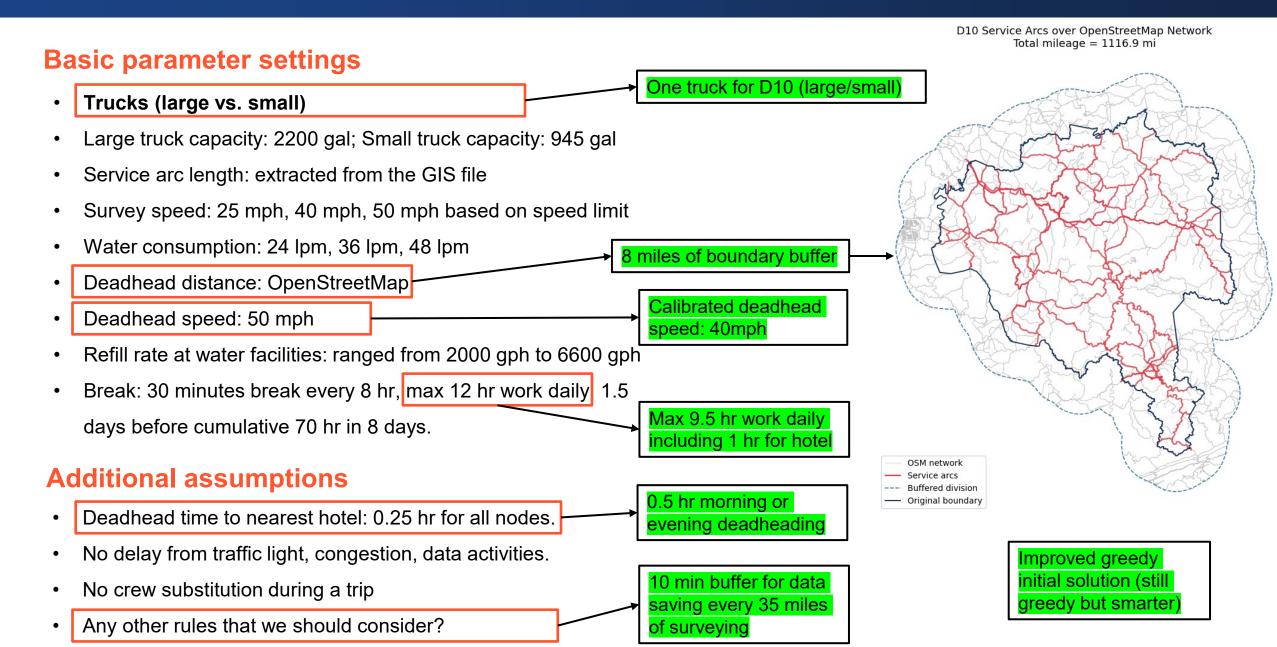


Example of decision tree flow chart

- Cost comparison with baseline threshold-based policy
 - Example: Rural Freeways 6+ Lanes 30-year horizon; if f < 40, do micro-surfacing, if CRS < 4, do UTBWC

Final Remarks

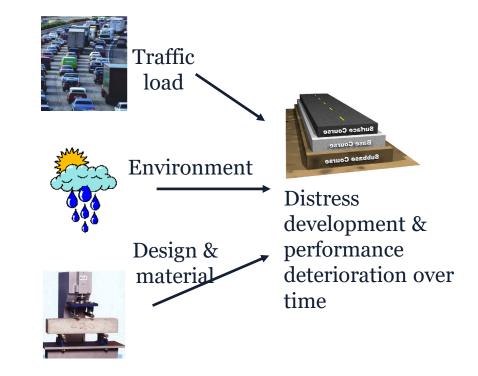
- Systematic strategies for friction measurements and data collection
 - Unifying data from various technologies (e.g., LWST, SCRIM, 3D laser scanning, computer vision, CAV on-board sensor)
 - Efficient schedule/route plan for network level data collection
- Integrated framework for safety analysis and asset management
 - Customized data-driven SPFs and CMFs for Illinois
 - Network screening + treatment selection
 - A variety of treatment options (e.g., HMA overlay, UTBWC, chip seal, microsurfacing, HFST)
 - There is no reason why "treatment" options cannot include initial pavement design and/or binder/aggregate choices...

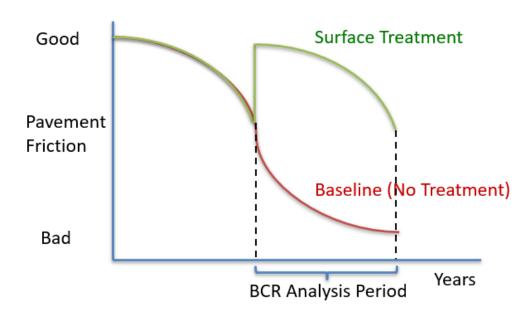


Thank You!

yfouyang@illinois.edu

Model Parameters & Assumptions





BCR Method

- General principles from the 2025 FHWA guide "Benefit-Cost Analysis Guidance for Discretionary Grant Programs"
 - Well-defined baseline case vs alternatives
 - Demand modeling and forecasting
 - Recommended \$ discounting: 7%
 - Appropriate analysis period: 3-7 years

KABCO Level	Monetized Value (2023 \$)
O – No Injury	\$5,300
C – Possible Injury	\$118,000
B – Non-incapacitating	\$246,900
A – Incapacitating	\$1,254,700
K – Killed	\$13,200,000
U – Injured (Severity Unknown)	\$229,800

