

PHYS 211 PLT Fluid Dynamics and Statics

1) Given the following piping system below, find the increase in height y2 of the right tube. Let P1 = 10 kPa, P2 = 5 kPa, V1 = 4 m/s, V2 = 2 m/s, $\rho = 997$ kg/m^3. Let the height of the left tube, y1, be the ground (y1 = 0).

2) A diver dives deep below the ocean to study a sunken ship as shown.

Suddenly on the way down, they become super interested in hydrostatic pressures and decide to measure the pressure at a height of 25 m below the surface of the ocean.

- a) What is the pressure that the diver measures?
- b) The maximum pressure that the diver's oxygen tank can handle is 350 kPa. Should the diver continue to dive towards the sunken boat? Explain why.

2)				, .	•	1 '1 '	11	41	equation:
4	· /	MAMA	α n α	ctring	10	deceribed	ı hv	the	eanation.
J		wavc	OH 6	ısume	10	ucscribec	ιυν	uic	cuuanon.

$$y(x,t)=0.05\cos(3x-2t)$$

(a) Determine the direction of wave propagation.

(b) Find the wavelength and frequency of the wave.

- 4) A string is under a tension of 50 N and has a mass per unit length of 0.02 kg/m.
 - (a) Calculate the speed of a wave traveling on this string.

(b) If the wave frequency is 10 Hz, what is the wavelength?