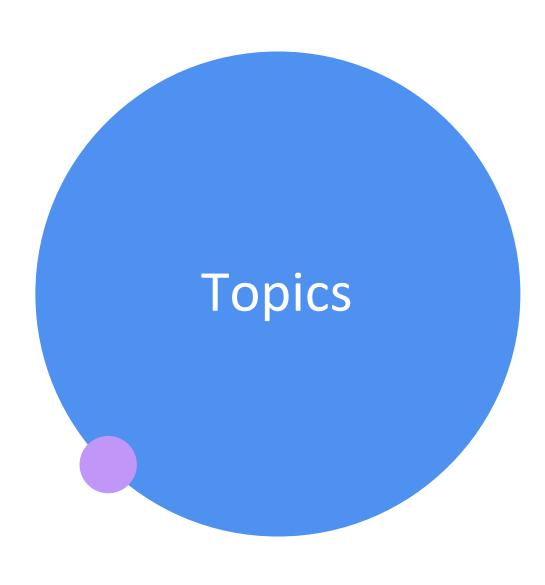


MATH 285 Midterm 3 Review

CARE

Disclaimer

- These slides were prepared by tutors that have taken Math 285. We believe that the concepts covered in these slides could be covered in your exam.
- HOWEVER, these slides are NOT comprehensive and may not include all topics covered in your exam. These slides should not be the only material you study.
- While the slides cover general steps and procedures for how to solve certain types of problems, there will be exceptions to these steps. Use the steps as a general guide for how to start a problem but they may not work in all cases.



- I. Systems of Differential Equations
 - I. System notation
 - II. Variation of Parameters
 - III. Eigenvectors/Eigenvalues
 - IV. Diagonalization
 - V. Putzer's Method
- II. Boundary Value Problems
 - I. Eigenfunction Problems
- III. Fourier Series

Systems of Ordinary Differential Equations

- Many physical phenomena can be described by a coordinated system of differential equations
 - For example, Maxwell's Equations:

$$\frac{\partial B}{\partial t} = -\nabla \times E$$

$$\mu_0 \varepsilon_0 \frac{\partial E}{\partial t} = \nabla \times B$$

 Also, higher order differential equations can be broken down into systems of ODE's

Creating Systems

- General process:
 - Redefine a derivative as a new variable
 - Create **vectors** v, g, and the **matrix** A
 - Write the differential equation in general form:

$$\frac{dv}{dt} = A(t)v + g(t)$$

Existence and Uniqueness

• If the equation is **linear**:

$$\frac{dv}{dt} = A(t)v + g(t)$$

• A unique solution exists if A(t) and g(t) are defined on the interval

The Fundamental Solution Matrix

- We want to find n solutions to the system of differential equations, where each solution $v_i(t)$ is an n-vector
- Build the fundamental solution matrix M(t) by column-stacking each solution $v_i(t)$

$$v_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
 $v_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$ $M = \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}$

The Fundamental Solution Matrix

- The Wronskian is the determinant of M(t)
 - If $W(t) \neq 0$, then a solution exists
 - If coefficients are continuous, then $m{W}(m{t})$ is either identically zero or nonzero
- M(t) depends on how the solutions are chosen
 - Most convenient choice is $M(t_0) = I$
 - $M(t_0) = I$ can be calculated as $M(t)M^{-1}(t_0)$

Putting it Together

 The homogeneous solution to the following differential equation:

$$\frac{dv}{dt} = A(t)v \qquad v(t_0) = v_0$$

is given by:

$$v(t) = M(t)M^{-1}(t_0)v_0$$

Abel's Theorem Extended

• For a system of linear differential equations given by

$$\frac{dv}{dt} = A(t)v$$

$$\frac{dW}{dt} = \operatorname{Tr}(A(t))W$$

- W is the Wronskian / determinant of the fundamental solution matrix
- The "trace" (Tr) of a matrix is the sum of its diagonal components
- If A(t) is continuous, then the Wronskian is either always or never 0

Variation of Parameters

• For a system of differential equations given by:

$$\frac{dv}{dt} = A(t)v + g(t)$$

• The **general solution** is given by:

$$v(t) = M(t) \int_{t_0}^{t} M^{-1}(s)g(s)ds + M(t)M^{-1}(t_0)v_0$$
particular solution characteristic solution

Calculating Eigenvalues and Eigenvectors

• Eigenvalues (λ) and eigenvectors (v) are given by:

$$(A - \lambda I)v = 0$$

- Calculate **eigenvalues** with: $det(A \lambda I) = 0$
- Then, calculate eigenvectors with first equation

Matrix Exponentials

 The matrix exponential definition comes from the power series definition of an exponent:

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

$$e^{At} = \sum_{k=0}^{\infty} \frac{(At)^k}{k!} = I + At + \frac{A^2t^2}{2!} + \cdots$$

Constant Coefficient Linear Systems

• If the matrix A is no longer a function of t:

$$\frac{dv}{dt} = Av$$

 The fundamental solution matrix can be calculated by the matrix exponential:

$$M(t) = e^{At}$$

Diagonalization

• If there are *n* linearly independent eigenvectors, then the matrix exponential can be calculated as:

$$e^{At} = UDU^{-1}$$
 eigenvalue $U = \begin{bmatrix} v_1 & v_2 & ... \end{bmatrix}$, $D = \begin{bmatrix} e^{\lambda_1} & 0 & 0 \ 0 & e^{\lambda_2} & 0 \ 0 & 0 & ... \end{bmatrix}$ eigenvector

Putzer's Method

- Putzer's Method will always work for solving the matrix exponential
- Trying to get to:

$$e^{At} = B_0 r_1 + B_1 r_2 + B_2 r_3 \dots$$

• Number of terms matches degree of matrix, I.E. 2x2 matrix goes up to the B_1r_2 term

Putzer's Method Contd.

- First, calculate the B matrices
- Follow the pattern:

$$B_0 = I$$

$$B_1 = (A - \lambda_1 I) B_0$$

$$B_2 = (A - \lambda_2 I)B_1$$

• • •

Putzer's Method Contd.

- Second, calculate the r functions, then plug everything in
- Follow the pattern:

$$\frac{dr_1}{dt} = \lambda_1 r_1,$$

$$r_1(0) = 1$$

$$\frac{dr_2}{dt} = \lambda_2 r_2 + r_1,$$

$$r_2(0) = 0$$

$$\frac{dr_3}{dt}=\lambda_3 r_3+r_2,$$

$$r_3(0) = 0$$

• • •

- Putzer's Method doesn't require knowing the eigenvectors
- More calculation heavy than diagonalization, but no matrix multiplication either
- Example:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$B_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$B_1 = A - 0I = A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$B_2 = (A - 2I) B_1 = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\frac{dr_1}{dt} = 0r_1$$
 $r_1(0) = 1$ $r_1(t) = e^{0t} = 1$ $r_2(t) = \frac{e^{2t}}{2} - \frac{1}{2}$

Ordinarily we would have to compute the solution to

$$\frac{dr_3}{dt} = 2r_3 + r_2(t) = 2r_3 + \frac{e^{2t}}{2} - \frac{1}{2} \qquad r_3(0) = 0$$

$$e^{tA} = 1 \cdot B_0 + \frac{e^{2t} - 1}{2} B_1 = \begin{pmatrix} \frac{e^{2t} + 1}{2} & \frac{e^{2t} - 1}{2} & 0\\ \frac{e^{2t} - 1}{2} & \frac{e^{2t} + 1}{2} & 0\\ 0 & 0 & e^{2t} \end{pmatrix}$$

Boundary Value Problems

- A boundary value problem is an analog to an initial value problem
- Instead of specifying just an initial condition, multiple
 "boundary" values are specified to constrain the solution

Eigenvalue Problems

- Eigenvalue problems are boundary value problems with an unknown parameter λ
- We look for cases that have non-trivial (non-zero) solutions
 - Generally a good idea to look at the positive case first

 Final answer is a set of eigenvalues and the eigenfunctions (solution functions) that go with it

$$y'' + \lambda y = 0 \qquad \lambda = k^2$$

$$\lambda = k^2$$

$$y(0) = 0$$

$$y(0) = 0$$
 $y'(1) = 0$

$$\lambda > 0$$

$$y = A\cos(kx) + B\sin(kx)$$

$$\lambda = \left(n + \frac{1}{2}\right)^2 \pi^2$$

$$\lambda = 0$$

$$y = A + Bx$$

$$\lambda = 0$$

$$\lambda < 0$$

$$y = Ae^{kx} + Be^{-kx}$$

$$\lambda = 0$$

• We first check $\lambda > 0$, which has general solution:

$$y(x) = A\cos(kx) + B\sin(kx)$$

Applying our first Boundary Condition

$$y(0) = A\cos 0 + B\sin 0 = A = 0$$

• Since A = 0,

$$y(x) = B\sin(kx)$$

Applying our next boundary condition,

$$y'(1) = Bk\cos(k) = 0$$

• Since we want a non-trivial answer, we do not want B or k to be 0. Therefore, we solve cos(k) = 0, which has solutions as follows:

$$k=rac{(2n+1)\pi}{2}, \qquad n=0,1,2,\ldots$$

• By our earlier definitions:

$$\lambda_n=k_n^2=\left(rac{(2n+1)\pi}{2}
ight)^2$$

and...

$$y_n(x) = \sinig(k_n xig) = \sin\Bigl(rac{(2n+1)\pi}{2}x\Bigr)$$

• We next check $\lambda = 0$, which has general solution:

$$y(x) = Ax + B$$

Applying the first boundary condition:

$$y(0)=0\Rightarrow B=0$$
, so $y(x)=Ax$

Applying the second boundary condition:

$$y'(x)=A$$
. Apply $y'(1)=0\Rightarrow A=0$.

So the only solution is y = 0

• We next check $\lambda < 0$, which has general solution:

$$y(x) = Ae^{kx} + Be^{-kx}$$

Using the first boundary condition,

$$y(0)=Ae^0+Be^0=A+B=0 \quad \Rightarrow \quad B=-A$$

Applying the second boundary condition:

$$y'(1) = 2Ak \cosh(k) = 0$$

 This also implies that A = 0 because k and cos(k) are not zero, which means that A = B = 0

Fourier Series

- (Nearly) any periodic function can be represented as an infinite series of sin and cos functions
- A Fourier Series will always repeat periodically, even if the modelled function is only defined on a certain interval

$$f(x) = A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right).$$

Fourier Coefficients

- The coefficients of the series can be directly calculated using the orthogonality of sin and cos
- The integral bounds are one period
 - · L is half of a period
- For odd functions, $A_n = 0$
- For even functions, $B_n = 0$

$$A_0 = \frac{1}{2L} \int_0^{2L} f(x) dx$$

$$A_n = \frac{1}{L} \int_0^{2L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

$$B_n = \frac{1}{L} \int_0^{2L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Fourier Cosine Series

- The Fourier cosine series models the even extension of a function
- f(-x) = f(x)
- Note that for the cosine series L is the full period (because it's half the period when extended)

$$A_0 = \frac{1}{L} \int_0^L f(x) dx$$

$$A_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

$$f(x) = A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right)$$

Fourier Sine Series

- The Fourier sine series models the odd extension of a function
- $\bullet \ f(-x) = -f(x)$
- Note that for the sine series L is the full period (because it's half the period when extended)

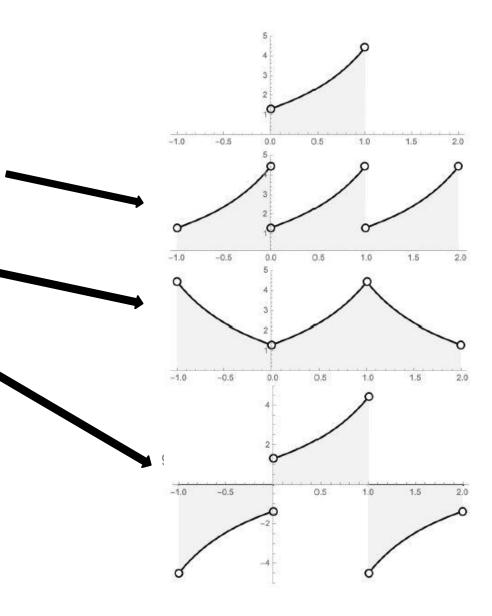
$$B_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$
$$f(x) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right).$$

Fourier Summary

• The "normal" Fourier series is the periodic extension

The Fourier cosine series is the even extension

 The Fourier sine series is the odd extension



Fourier Convergence Theorem

Theorem 6.2.2. Suppose that f(x) is piecewise C^2 (twice differentiable) and 2L-periodic: f(x + 2L) = f(x), with jump discontinuities at the points of discontinuity. Then the Fourier series

$$A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right)$$

converges to f(x) at points of continuity of f(x), and to $\frac{1}{2}(f(x^-) + f(x^+))$ at the jump discontinuities.

- If the modelled function is continuous, the series converges to the function values
- If the modelled function has a discontinuity, the series converges to the average of the values at the jump

Thanks for Coming!

