
PHYS 212 Review 3

Exam 3
Queue

Exam 3 Overview

- 18) RL Circuits
- 19) LC Circuits
- 20) AC Circuits
- 21) AC Power and Resonance
- 22) Maxwell's Displacement Current
- 23) EM Waves
- 24) Polarization
- 25) Refraction

RL Circuits

Inductors behave "oppositely" to capacitors (i.e. at t=0 and t=∞ when charging up)

Inductors in circuits add in series and in parallel like resistors

$$L \equiv \frac{\varphi_B}{I}$$

Inductance: L = magnetic flux / current

Time constant: $\tau = L / R$

Charging and Discharging Equations

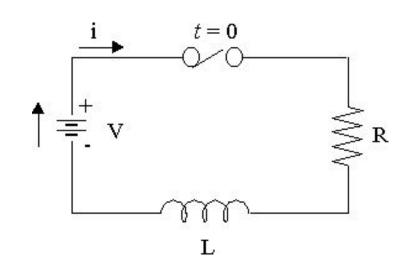
$$\tau = \frac{L}{R}$$

$$V = L\frac{dI}{dt}$$

$$I(t) = I(\infty) \left(1 - e^{-t/\tau} \right) \qquad I(t) = I(0)e^{-t/\tau}$$

RL Circuits cont.

Charging


t = 0 → inductor acts like an open circuit

• I = 0 A, but there is a voltage

 $t = \infty \rightarrow inductor acts like a wire (short circuit)$

• V = 0 V, but there is a current

Discharging

 $t = 0 \rightarrow inductor$ acts like a current source (I at t = 0 is the same as I at $t = \infty$ found when charging up)

 $t = \infty \rightarrow \text{inductor acts like a wire (no more current in the circuit)}$

LC Circuits

Inductors and capacitors are storage devices so their energies are constantly oscillating between one another (given an initial voltage/current)

Resonance only occurs at the natural frequency: ω_0

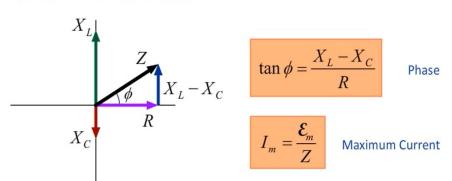
Natural Frequency

$$\omega_o = \frac{1}{\sqrt{LC}}$$

$$U = \frac{1}{2}LI^2 \qquad U = \frac{1}{2}CV^2$$

AC Circuits (RLC)

Resistor is in phase with the current


Inductor leads current by 90 degrees

Capacitor lags current by 90 degrees

Steps for AC Circuit Problems:

- 1) Find the reactances first $(X_L \text{ and } X_c)$
- 2) Then find impedance (Z)
- 3) Now you can solve for I_m
- 4) Solve for phase of the generator
 - a) If phase is positive → generator voltage leads current
 - b) If phase is negative → generator voltage lags current

Impedance Phasor Diagram

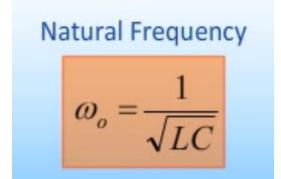
Inductor Reactance
$$X_L = \omega L$$

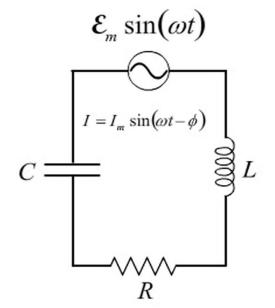
Capacitor Reactance
$$X_C = \frac{1}{\omega C}$$

Impedance
$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

Average Power and Resonance

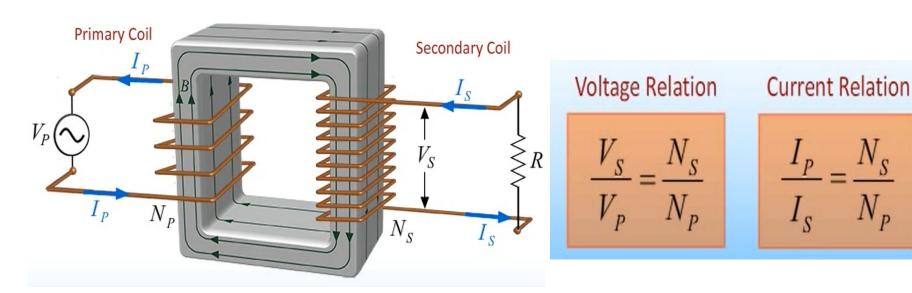
Resonance occurs when $\omega = \omega_0$

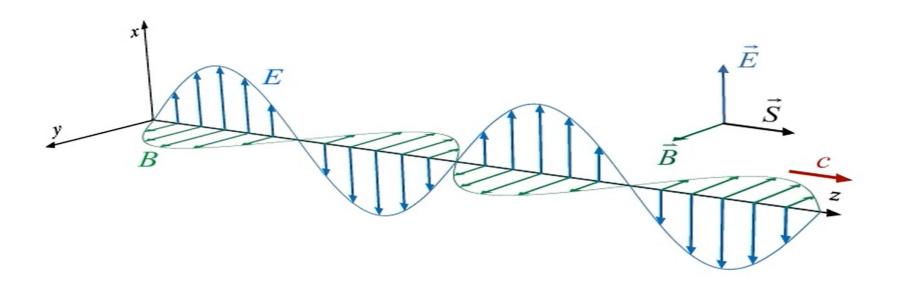

This makes $X_1 = X_C$ thus $Z = R \Rightarrow$ this is when I_m is at its maximum value


$$\langle P_{Generator} \rangle = \mathcal{E}_{rms} I_{rms} \cos \phi$$

Root Mean Square (rms)

$$\mathcal{E}_{rms} = \frac{\mathcal{E}_m}{\sqrt{2}}$$
 Voltage


$$I_{rms} = \frac{I_m}{\sqrt{2}}$$
 Current



Transformers

Transformers are used to convert from high voltages to low voltages and vice versa

EM Wave Image (Remember this image!)

EM Wave Properties $E_x = E_o \cos(kz - \omega t)$

$$E_x = E_o \cos(kz - \omega t)$$

E and **B** have the same waveform: If E is $\sin(kz-\omega t)$ then B is also $\sin(kz-\omega t)$

Magnitude of B is smaller: $\mathbf{B}_0 = \mathbf{E}_0 / \mathbf{c}$ where c is the speed of light (3 x 10⁸ m/s)

The "x, y, or z" variable inside the argument tells you the direction of propagation $\cos(kz - \omega t)$ travels in +z-direction, $\cos(kz + \omega t)$ travels in -z-direction

Wave parameters: $\omega = 2\pi f$, $v = \lambda f = \omega / k$ (v = c for EM waves in free-space)

Poynting vector (S) points in the same direction the wave is traveling

$$S = (E \times B) / \mu_0$$

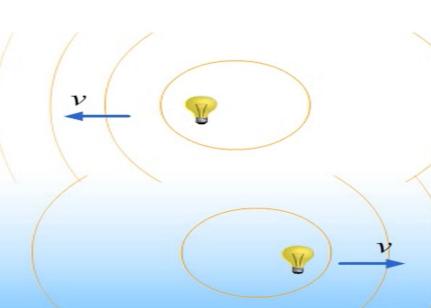
Power = S x A (units: W), **Intensity = Power / Area = S** (units: W/m²)

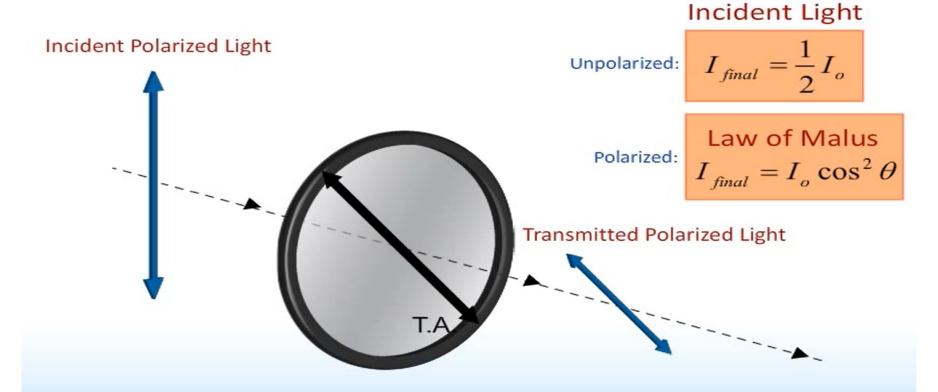

Doppler Shift

$$f' = f \sqrt{\frac{1 \pm \beta}{1 \mp \beta}} \qquad \xrightarrow{\beta \ll 1} \qquad f' \approx f(1 \pm \beta)$$

where
$$\beta \equiv \frac{v}{c}$$

Decreasing Separation


$$f' = f\sqrt{\frac{1+\beta}{1-\beta}}$$


Increasing Separation

$$f' = f\sqrt{\frac{1-\beta}{1+\beta}}$$

Linear Polarization

Circular Polarization

Circular Polarization

Right-handed (RCP):

Right-handed (RCP):
$$E_{x} = E_{o} \cos(kz)$$

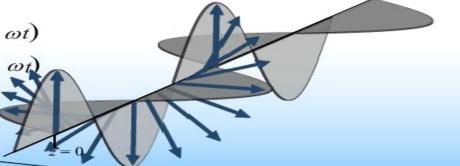
$$\phi_{x} - \phi_{y} = \frac{\pi}{2} \quad \text{Examples}$$

$$E_{x} = E_{o} \cos(kz - \omega t)$$

$$E_{y} = E_{o} \sin(kz - \omega t)$$

$$E_x = E_o \cos(kz - \omega t)$$

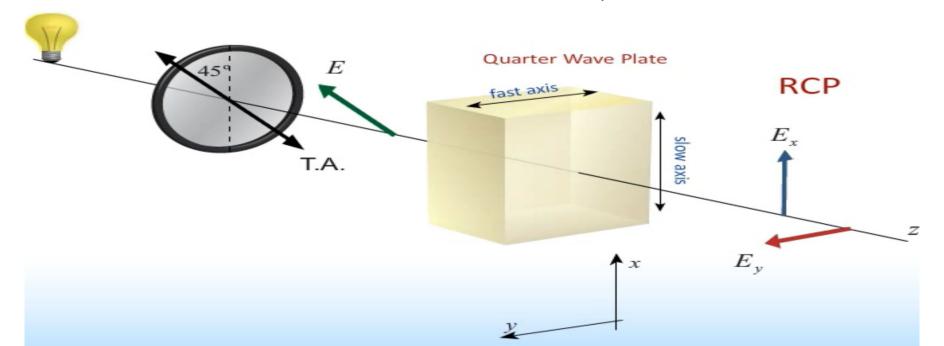
$$E_{y} = E_{o} \sin(kz - \omega t)$$


Left-handed (LCP):

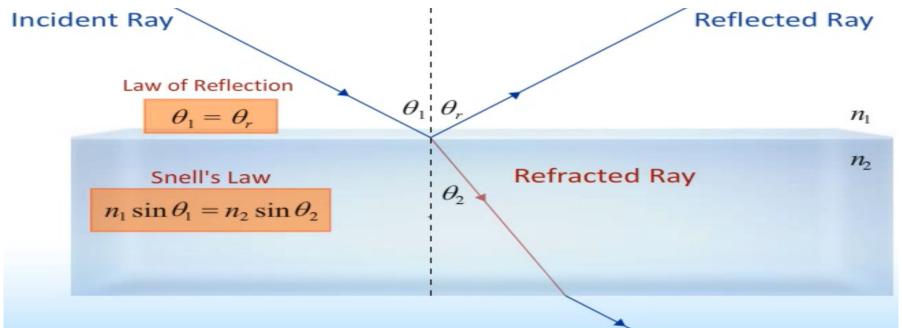
$$\phi_x - \phi_y = -\frac{\pi}{2} \frac{\text{Examples}}{E_x = E_o \sin(kz - \omega t)}$$

$$E_y = E_o \cos(kz - \omega t)$$

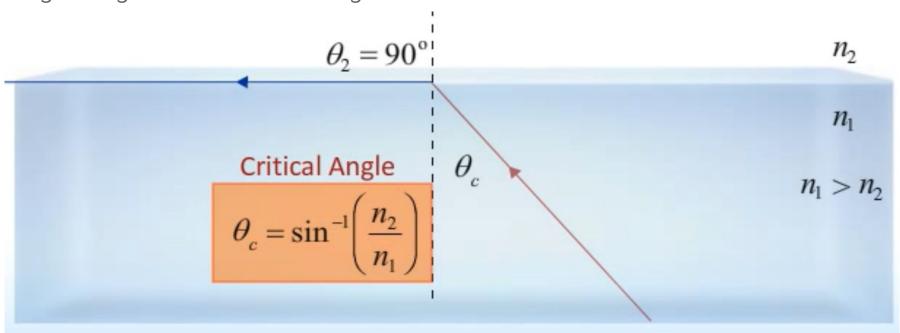
$$E_x = E_o \sin(kz - \omega t)$$


$$E_y = E_o \cos(kz - \omega_t)$$

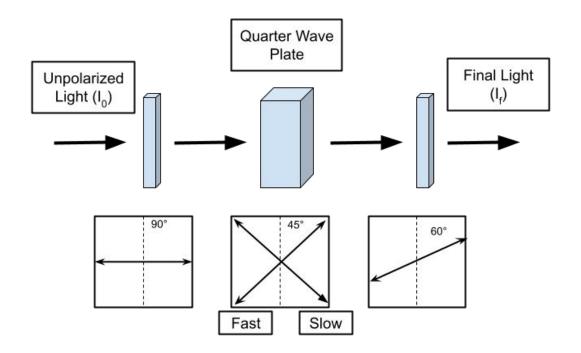
 $E_{y} = E_{a} \sin(kz)$


Circular Polarization cont.

- Produced by passing linear polarized light through a quarter wave plate (only if the light isn't 100% vertically or horizontally linearly polarized beforehand)
- If Slow-Axis X Fast-Axis = Direction of Wave → RCP, otherwise LCP

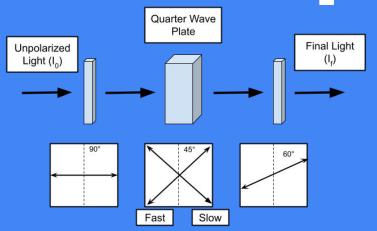

Reflection and Refraction

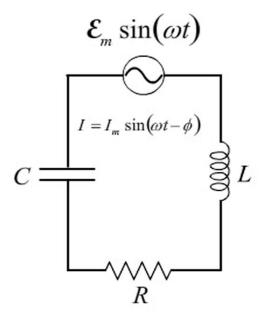
- Law of Reflection the incident angle is equal to the reflected angle wrt the normal
- Index of Refraction n = c/v is material specific: for vacuum/air n = 1
- Snell's Law used to find the angle of the refracted ray wrt the normal


Reflection and Refraction cont.

Total Internal Reflection - only happens when rays are at the critical angle or at angles larger than the critical angle

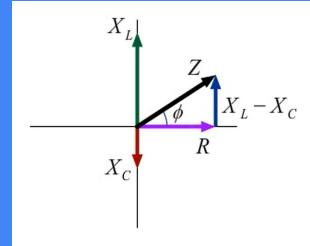
Question Time!


Question 1


Find the Final Intensity:

- a. $(0.5)I_0\cos^2(45)$
- b. $(0.5)I_0 \cos^2(15)$
- c. $(0.25)I_0$
- d. $(0.5)I_0$ e. $(0.5)I_0\cos^2(60)$

Answer: C First Polarizer cuts intensity by 0.5 QWP creates circular polarization Circularly polarized light is cut in half when indecent to a polarizer


Question 2

 $\omega = 886 \text{ rad/s}$

If the power from the resistor is at a maximum at t_1 , how much longer will it be before the power from the resistor is at a maximum again?

- a. 0.00113 seconds
- b. 0.00056 seconds
- c. 0.0071 seconds
- d. 0.0035 seconds

Answer: D $P = IV \text{ or } V^2/R$ Voltage is maximized on x-axis Phasor needs to make half a rotation $2\pi(rad/rotation)/886(rad/s)=0.0071 s$ Half a rotation = 0.0035 seconds

Sign into queue for worksheet!

