1. Write down the limit definition for a function, f(x), having a horizontal asymptote at the line y = b. Explain your reasoning.

$$\lim_{x \to \infty} f(x) = b$$

$$\lim_{x \to -\infty} f(x) = b$$

For either of these two limits, this means that when x approaches $-\infty$ or ∞ , f(x) approaches b.

2. What does it mean for two angles to be coterminal?

The angles begin and end in the same place, but they are not the same angle

- 3. List two angles that are coterminal to $\frac{5\pi}{3}$
- $\frac{-5\pi}{3}$ + 2π (once around unit circle)
- $\frac{-5\pi}{3}$ + 4π (twice around unit circle)
 - 4. Find the exact value of each of the following.
 - i. $arcsin(\frac{\sqrt{3}}{2})$

<u>π</u>

ii. arccos(cos(0))

0

iii. $arccos(cos(\pi))$

π

iv.
$$arcsin(-\frac{\sqrt{3}}{2})$$

-π 3

v.
$$arccos(1)$$

0

vi.
$$sin(arccos(-1))$$

0

5. What is the restricted range for inverse sine? For inverse cosine? For inverse tangent?

The range of arcsin(x) is

$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
. The range of $\arccos(x)$ is $[0, \pi]$. The range of $\arctan(x) = \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

- 6. Consider the function $f(x) = \frac{1}{x^2-9}$
 - a. What is the domain of f(x)? Write the domain in interval notation

$$(-\infty, -3) \cup (-3,3) \cup (3,\infty)$$

b. What are the x- and y- intercepts of f(x)?

No x - intercepts

Y-intercept:
$$(0, \frac{-1}{9})$$

c. List the limits that you need to evaluate in order to determine the end behavior of this function.

$$\lim_{x\to\infty} f(x)$$

$$\lim_{x\to\infty} f(x)$$

d. Which of the limits in part (c) can tell you whether the function has a horizontal asymptote? Evaluate these limits.

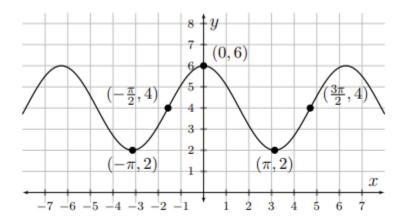
$$Y = 0$$

7. Determine the following limits.

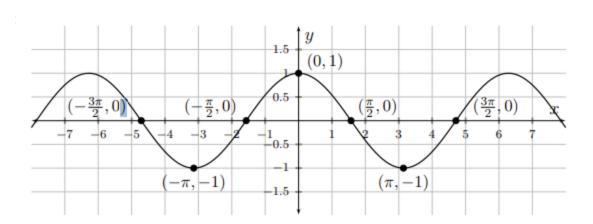
a.
$$\lim_{x \to -4^{-}} \frac{x}{x+4}$$

 ∞

b.
$$\lim_{x \to 1+} \frac{x^2 + 2x - 3}{x^2 - x}$$


4

c.
$$\lim_{x \to 3} \frac{3}{x-3}$$


DNE

8. Use transformations to put two cycles/periods of the following functions. Describe each transformation in words.

a.
$$f(x) = 2cos(x) + 4$$

b.
$$g(x) = -\sin(x - \frac{\pi}{2})$$

