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1. Consider a sealed container with a volume of 1 m3 filled with 1023 helium atoms and 2×1023

molecules of nitrogen. Recall that helium is a monatomic gas and nitrogen is a diatomic gas.
Initially the temperature of the gas mixture is 1000 K.

(a) Find the pressure inside the container (Answer in Pa).

A) 8980

B) 8290

C) 4140

D) 2250

(b) Find the ratio of the total molecular rotational energy to the total translational energy (molecular
and atomic) inside the container. Assume that equipartition applies.

A) 0.333

B) 0.444

C) 0.666

D) 0.777

(a) The answer is (C). This container holds a mixture of two gases, so the ideal gas law has to be used
on each separately, and then sum of the pressures will be the total pressure from the gas mixture.

Helium

pHe =
NHekbT

V

Nitrogen

pN = NNkbT
V

Given these relations, the total pressure is the sum of each partial pressure. Note that the volume
and temperature is the same for these two gases.

p = pHe + pN =
(NHe +NN)kbT

V

(b) The answer is (B). First recall that the formula for the internal energy of a gas as a result of NDOF

degress of a freedom is U = NDOF

2
NkbT . The total translational energy is the sum of the energy

from the He atoms and the N atoms, both of which have 3 translational degrees of freedom per
particle. Let T be the total translational kinetic energy, then

T = THe + TN =
3

2
NHekbT +

3

2
NNkbT

The total rotational energy, unlike the translational energy, comes entirely from the N atoms since
they’re diatomic. There are only 2 degrees of freedom here. Let R be the rotational kinetic energy,
then

r = NNkbT

Taking the ratio of r to T , r
T
, gives

r

T
=

NNkbT
3
2
NHekbT + 3

2
NNkbT

=
2

3

NN

NHe +NN

Note that this took into account that Helium is monatomic (NDOF = 3), and Nitrogen is diatomic
(NDOF = 5, split among translation and rotation).
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2. Which conditions are held constant in the following processes? (Refer to the formula sheet if you
are not sure!)

a) Isothermal b) Isobaric c) Isochoric d) Adiabatic

a) constant temperature

b) constant pressure

c) constant volume

d) no heat added, no change in entropy

3. What is the relationship between volume and pressure during isothermal and adiabatic processes
for an ideal gas, respectively?
In an isothermal process, the temperature is constant and we can apply the ideal gas law: pV =
NkbT = constant (the ideal gas law is also used for isobaric and isochoric processes).

In an adiabatic process, pV γ = constant where γ = Cp

Cv
= (D + 2)/D. Where Cv is the con-

stant volume heat capacity, Cp is the constant pressure heat capacity, and D is the number of
degrees of freedom. Since no heat is added (adiabatic) but work can still be done, ∆S = 0. As the
gas compresses, the temperature increases, and as the gas expands, the temperature decreases.

4. The following two questions refer to the setup described below.

A piston of volume 0.05 m3 contains 5 moles of a monatomic ideal gas at 300 K. If it under-
goes an isothermal process and expands until the internal pressure matches the external pressure,
PE = 1 atm.

(a) How much work is done by the gas on the environment (Values have units of Joules)?

a) 7.42 × 103

b) 1.12 × 104

c) -1.12 × 104

d) 1.83 × 104

e) -1.83 × 104

(b) Suppose that the piston undergoes an adiabatic expansion instead, what is the final volume of the
piston, Vf? (Values have units of cubic meters)

a) 0.086

b) 0.095

c) 0.123

(a) The answer is (b). The work done ON the gas is dWon = −pdV while work done BY the gas is
dWby = pdV . They are different by a minus sign, so make sure to check your signs. To find the
total work, we integrate both sides of the equation, writing p in terms of V using the ideal gas law
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Wby =

∫ Vf

Vi

p dV =

∫ Vf

Vi

nRT

V
dV = nRT ln

(Vf

Vi

)
The final volume can be found using the ideal gas law (make sure pressure is in Pascals).

Vf =
nRT

PE

= 0.123

From this we can determine the work done by the gas on the environment:

Wby = nRT ln

(
Vf

Vi

)
= 5 ∗ 8.314 ∗ 300 ∗ ln

(
0.123

0.05

)
= 1.12 × 104 J

(b) The answer is (a). The P-V relation in an adiabatic process follows pV γ = constant. Since the
ideal gas is monatomic, γ = 5

3
. We can find the initial pressure using ideal gas law

Pi =
nRT

Vi

= 249420 Pa

which allows us to calculate the constant PV γ = 249420× 0.05
5
3 = 1693

After the expansion, we can use the p− V relation again and plug in Pf = PE to get

PEV
γ
f = 1693 → Vf = 0.086

5. A monatomic, ideal gas is contained at fixed volume under pressure p. Now suppose the pressure
is tripled. What is the ratio of the initial vrms to the final v′rms? (vrms/v

′
rms)

In order to calculate vrms, we must equate kinetic energy with the internal energy (of a single
particle of the gas).

1

2
mv2rms =

3

2
kbT =

3

2

pV

N

Where the ideal gas law was used to make the last equation. Solving for vrms, we get
√

3pV
Nm

If we then triple the pressure, we get v′rms =
√

9pV
Nm

Taking the ratio, vrms

v′rms
, we get

vrms

v′rms

=

√
3pV
Nm√
9pV
Nm

=

√
1

3
=

1√
3
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6. Using the second law of thermodynamics, show that it is impossible for a heat engine to operate
at ϵ = 1.
Start with the fact that ∆Stotal = ∆SH + ∆SC (the total change in entropy is the sum of the
change in entropy of the hot and cold reservoir).

We know from the definition of temperature that 1
T
= dS

dU
. This lets us rewrite the above as

∆Stotal =
∆UH

TH

+
∆UC

TC

= −QH

TH

+
QC

TC

Where the last step is a result of Q = ∆U since the reservoirs do no work. Now using the second
law, ∆Stotal ≥ 0, we can see QC

QH
≥ TC

TH

Combining this with the definition of engine efficiency: ϵ = W
QH

= QH−QC

QH
= 1− QC

QH

We can see the that there is a limit on ϵ

ϵ ≤ 1− TC

TH

7. Consider a balloon of volume 3 m3 and at an initial pressure of 3 atmospheres.

(a) If the pressure is held constant and the balloon is heated up, what is the work done by the balloon
on its environment given that the balloon expands to 5 m3?

(b) If the volume is held constant, what is the new work done on the environment given that the
balloon is heated up?

(c) If the pressure is not constant but now a function of volume, what is the work done on the
environment given that the balloon is at 387 K and contains 283 moles of a monatomic gas, and
expands to 5 m3?

(a) If pressure is held constant, then we can pull it out of the integral for work.

W =

∫ 5

3

pdV

p = 3atm ≈ 304, 000Pa

Thus:
W = 304, 000V |53 = 608kJ

(b) If volume is held constant, no work can be exerted and thus W = 0

(c) If p = p(V ), then we can invoke the ideal gas law to substitute out p!

W =

∫ 5

3

pdV =

∫ 5

3

nRT

V
dV

Now we can integrate.

W = nRT

∫ 5

3

1

V
dV = nRT ln

(
5

3

)
= 465.136kJ
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The decrease in energy in problem (c) relative to problem (a) is because the pressure can change
in (c)! A loss of pressure indicates less energy in the air molecules within the balloon, which
translates to less energy transferred to the environment as the balloon inflates.

8. A Carnot heat engine (one operating at maximum efficiency) is operating between two reservoirs
at TH and TC . Suppose that 1 kJ of heat must be added to the engine in order to produce 500 J of
work and you measured the temperature of the cold reservoir to be 300 K, what is the temperature
of the hot reservoir?

a) 150 K

b) 200 k

c) 300 K

d) 450 K

e) 600 K

The answer is (e). The efficiency of this particular engine is ϵ = W
QH

= 500 J
1 kJ

= 1
2
. However, we

are told that this is a Carnot engine, meaning it is operating at its maximum possible efficiency,
which is given by

ϵmax = 1− TC

TH

Knowing that the observed efficiency is the maximum efficiency (by definition of a Carnot engine),
we can equate

ϵ =
1

2
= 1− TC

TH

Solving for the unknown value of TH , we find 600K.

9. A heat pump uses 200 J of work to remove 300 J of heat from a cold reservoir. How much heat
would be delivered to the hot reservoir?
The relationship between the work done, the energy extracted form the cold reservoir, and the
energy added to the hot reservoir is

QH = W +QC

This is also the equation used for a heat engine when all the energy originates from the hot
reservoir. You can see this is true from conservation of energy.

Using this fact, and remembering that all these quantities are defined to be positive, we get

QH = 500 J
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10. The second law of thermodynamics states that the change in entropy is always greater than or
equal to zero, yet sometimes in our calculations we can get a negative change in entropy for a piece
of our system. What does a negative change in entropy represent? And how do negative changes
not violate the second law?
A negative change in entropy means that the object is transitioning to a state with fewer mi-
crostates (which can be thought of as a less “diverse” state).

The second law states that the change in entropy for the entire system considered must be greater
than or equal to zero, thus we can have individual components of a larger system that decrease in
entropy, but that would require another part of the system gaining at least that much entropy.

11. Suppose we have some ocean water (which we will treat as pure water for our purposes) connected
to an atmosphere. The atmosphere above contains an abundance of CO2 gas. CO2 can dissolve
into water just like a solid. What is true about the total Gibbs Free Energy and Internal Energy
of the ocean water system after enough CO2 has dissolved to come to equilibrium, acidifying the
ocean?

Don’t let the scenario distract you from what’s really going on! At the end of the day, the Gibbs
Free Energy will be minimized when the system comes into equilibrium to maximize entropy. The
Internal Energy will increase because accepting a molecule of CO2 requires energy (specifically, to
break the hydrogen bonds between adjacent water molecules).

12. How do you calculate the work from an isothermal process from Vi to Vf for an ideal gas?
Work from any thermodynamic process is defined as:

W =

∫ Vf

Vi

pdV

But wait! p changes as V changes, so we can’t take the integral naively. If we assume an ideal gas,
i.e.:

pV = NkbT =⇒ p =
NkbT

V
Now we have parameterized p as a function of V! Moreover, NkbT is a constant under an isothermal
process, so we can pull it out of the integral. We are left with:

W =

∫ Vf

Vi

NkbT

V
dV =⇒ W = NkbT

∫ Vf

Vi

1

V
dV

Evaluating the integral, we get:

W = NkbT (lnVf − lnVi) = NkbT ln
Vf

Vi

.

13. Consider a rectangular cycle composed of two isobaric and two isochoric processes. The states are
labeled 1 → 2 → 3 → 4 → 1:

P1 = 100,000 Pa, P2 = 50,000 Pa

V1 = 0.001 m3, V2 = 0.003 m3
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PV Diagram

Volume (m3)

Pressure (Pa)

1 2

34

V1 V2

P1

P2

1. Isobaric expansion 1 → 2:
WAB = P1(V2 − V1)

WAB = (100,000)(0.003− 0.001) = 200 J

2. Isochoric cooling 2 → 3:

The volume does not change, so WBC = 0

3. Isobaric compression 3 → 4:

WCD = P2(V1 − V2)

WCD = (50,000)(0.001− 0.003) = −100 J

4. Isochoric heating 4 → 1:

The volume does not change, so WDA = 0

Net Work Done Over the Entire Cycle

Wnet = WAB +WBC +WCD +WDA

Wnet = 200 + 0− 100 + 0 = 100 J

Wnet = 100 J

Positive net work means the gas does net work on the environment.
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14. How does a heat engine’s work output and efficiency scale with the temperatures of its reservoirs?
If you were to design a perfect heat engine, what would be the lowest temperature you should set
your cold reservoir to?
The efficiency and work output increase linearly with the difference in temperatures between the
two reservoirs.

ϵ =
W

QH

=
QH −QC

QH

Since the difference QH −QC increases as the temperature between the reservoirs increases (heat
scales proportionally with temperature), we know that the work, and thus the efficiency of an
engine, increases as well from the math.
We use the Carnot efficiency to calculate the ideal efficiency of an engine using the difference
between TH and TC .

ϵ ≤ TH − TC

TH

If we set the cold reservoir’s temperature to 0 K (absolute zero), we obtain the maximum temper-
ature difference and hence the maximum amount of work out (and an efficiency of 100%). The
problem is the lower you set TC to be, the more energy you need to put into a heat pump to lower
your reservoir to that desired temperature. At some point, the costs of the energy expenditures
outweigh the benefit of using the heat pump, and this is why our engines are restricted to always
be far below the Carnot efficiency.

15. True or False: For an ideal gas, the molar heat capacity at constant pressure will always be greater
than the molar heat capacity at constant volume.
From the definition of molar heat capacity at constant pressure

cp,mol =
1

n

dU

dT
+

p

n

dV

dT

and the definition of molar heat capacity at constant volume

cv,mol =
1

n

dU

dT

we can relate the two by substitution, ending up with

cp,mol = cv,mol +
p

n

dV

dT

So we already see that cv,mol is less than cp,mol as long as p
n
dV
dT

> 0. Now let’s confirm that, for an
ideal gas, p

n
dV
dT

is greater than zero.

Starting from the ideal gas law pV = NkbT , we can differentiate V with respect to T to get pdV
dT

=
Nkb. Substituting this into the equation relating the two molar heat capacities and simplifying,
we get
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cp,mol = cv,mol +
p

n

dV

dT

cp,mol = cv,mol +
N

n
kb

cp,mol = cv,mol +NAkb

cp,mol = cv,mol +R

Note that N
n

is Avogadro’s Number, NA, and R is the universal gas constant. Since R > 0, we
have confirmed that cp,mol > cv,mol for an ideal gas.

True

16. For this problem, we’ll be playing around with differentials.

(a) Recall that the expression for Gibbs Free Energy is

G = U − TS + pV

Without making any substitutions, write out the full differential form of G, dG.

(b) Determine the derivative of G with respect to volume V at fixed pressure, temperature, and number
of particles. That is, find (

∂G

∂V

)
T, p, N

and simplify as much as you can.

(c) Should G be minimized or maximized at equilibrium? What does this mean ∂G/∂V should be
equal to at equilibrium?

(d) Determine a formula for the equilibrium volume Veq given that this gas is not ideal, i.e.

S = Nk ln(V − bN)

(e) Determine the equilibrium volume if T = 340 K, p = 50 kPa, n = 4 mol, and b = 8.1× 10−27 m3.

(a) To find the differential, we must apply chain rule to the other variables:

G = U − TS + pV

dG = dU − SdT − TdS + V dp+ pdV

(b) First, we divide the expression we found in (a) by the differential dV :

∂G

∂V
=

∂U

∂V
− S

∂T

∂V
− T

∂S

∂V
+ V

∂p

∂V
+ p

∂V

∂V

=
∂U

∂V
− S

∂T

∂V
− T

∂S

∂V
+ V

∂p

∂V
+ p
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Then, we fix the variables: T , p, and N . To deal with them, we set any derivative of these variable
to 0: (

∂G

∂V

)
T, p, N

=
∂U

∂V
− S(0)− T

∂S

∂V
+ V (0) + p

=
∂U

∂V
− T

∂S

∂V
+ p

Finally, recall that U = NDOF

2
NkT . In other words, U depends on T and N , but since these

variables are fixed, U is also fixed, so derivatives of U are equal to 0.(
∂G

∂V

)
T, p, N

= −T
∂S

∂V
+ p

(c) G should be minimized at equilibrium. Thus, its derivative with respect to volume should be 0 at
equilibrium.

(d) We can plug this S equation into the expression we found in (b):(
∂G

∂V

)
T, p, N

= −T
∂

∂V
(Nk ln(V − bN)) + p

= −T

(
Nk

V − bN

)
+ p

G should be minimized, so we set ∂G/∂V equal to 0:

0 = −T

(
Nk

V − bN

)
+ p

p =
NkT

V − bN

pV − pbN = NkT

V =
NkT + pbN

p

We can also maximize Entropy (S) instead of minimizing Gibbs Free Energy (G), because they are
the same thing:

S = Nk ln(V − bN)

∂S

∂V
=

p

T
=

Nk

V − bN

V =
NkT + pbN

p

We get the same equation for V.

Thus, maximizing Entropy is the same as minimizing Gibbs Free Energy.
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(e) We simply plug the given quantities into the equation we found in (d). Note, however, that we’re
given the number of moles which must be converted into the number of molecules (N = nNA).
We get V = 0.246 m3.

17. Maximizing the Entropy of the system and environment is equivalent to:

(a) Minimizing the Gibbs Free Energy of the system

(b) Minimizing the Gibbs Free Energy of the system and environment

(c) Minimizing Temperature

(d) Maximizing Work

Answer: a
Consider the Second Law of Thermodynamics:

dStot = dSsys + dSres > 0

The thermodynamic identity says

dSres =
dUres

T
+

p

T
dVres =⇒ dSres = −dUsys

T
− p

T
dVsys

since a change in the energy/volume of the reservoir is the same as a negative change in the
energy/volume of the system. Plugging this into dStot, we find:

dStot = dSsys −
dUsys

T
− p

T
dVsys > 0

dStot =
−1

T
(dUsys + pdVsys − TdSsys) > 0 =⇒ dStot = −dGsys

T
> 0

Which shows that maximizing the total entropy of the system equates to minimizing the system’s
Gibbs Free Energy.
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