1. Report No.	Government Accession No	Recipient's Catalog No.
UT-24-EP-02	N/A	N/A
4. Title and Subtitle		5. Report Date
Al-based Lift Path Planning for Robotic Installation of Precast Bridge Components		July 2025
		6. Performing Organization Code
		N/A
7. Author(s)		8. Performing Organization Report No.
Mohsen Navazani, Graduate Research Assistant Jiannan Cai, Ph.D., Pl Ao Du, Ph.D., Co-Pl		UT-24-EP-02
Performing Organization Name and Address		10. Work Unit No.
School of Civil & Environmental Engineering, and Construction Management The University of Texas at San Antonio		N/A
One UTSA Circle, San Antonio, TX 78249		11. Contract or Grant No.
		69A3552348333
12. Sponsoring Organization Name and Address		13. Type of Report and Period Covered Final Report
	S Department of Transportation	January 2025 – July 2025
University of Illinois Urbana-Champaign. T	Office of Research, Development and echnology (RD&T)	14. Sponsoring Agency Code
	200 New Jersey Avenue, SE Vashington, DC 201590	N/A

15. Supplementary Notes

For additional reports and information visit the TRANS-IPIC website https://trans-ipic.illinois.edu

16. Abstract

This exploratory project presents the development and testing of an Al-based framework for 3D crane lift path planning, designed for the robotic installation of precast bridge components via physics-based dynamic simulation. Motivated by the inefficiencies, labor intensity, and safety challenges of traditional manual installation methods, this research leverages Deep Reinforcement Learning (DRL) to automate precise component placement for precast concrete bridge installation. A high-fidelity virtual bridge construction environment was developed in MuJoCo, modeling cranes and components at 1:1 scale. A novel two-phase training approach for the DRL agent enabled learning of both collision avoidance during approach and high-precision final placement. Upon completion, the model was evaluated over 100 episodes, and achieved 100% successful rate (i.e., the component is placed around desired location without collision), an average placement accuracy of 0.2184 meters, and an orientation accuracy of 6.5803 degrees. The robotic lifting time recorded within the simulation environment averaged 2.3520 seconds, representing a significant improvement over the simulated human lifting time of 34.86 seconds, which indicates the potential efficiency gains. This project proves the feasibility and potential benefits of using Al-based robotic technologies for precast component installation in transportation infrastructure, establishing a robust technical foundation. The developed framework can be extended to real-world construction projects, offering a path to significantly improve construction productivity, enhance safety, and reduce human effort in complex and dynamic environments.

17. Key Words		18. Distribution Statement	
Al-based Crane Lift Path Planning, Robotic Installation, Precast Concrete Bridge Installation, Deep Reinforcement Learning, Physics-based Simulation		No restrictions.	
19. Security Classification (of this report)	20. Security Classification (of this page)	21. No. of Pages	22. Price
Unclassified.	Unclassified.	17	N/A

Disclaimer:

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, under 69A3552348333 from the U.S. Department of Transportation's University Transportation Centers Program. The U.S. Government assumes no liability for the contents or use thereof.

Transportation Infrastructure Precast Innovation Center (TRANS-IPIC)

University Transportation Center (UTC)

Al-based Lift Path Planning for Robotic Installation of Precast Bridge Components [UT-24-EP-02]

FINAL REPORT

Submitted by:

PI: Dr. Jiannan Cai, jiannan.cai@utsa.edu School of Civil & Environmental Engineering, and Construction Management (CECM) The University of Texas at San Antonio (UTSA) Co-PI: Dr. Ao Du, ao.du@utsa.edu,CECM, UTSA Graduate research assistant: Mohsen Navazani, Mohsen.Navazani@utsa.edu, CECM, UTSA

Collaborators / Partners:

Submitted to:

TRANS-IPIC UTC University of Illinois Urbana-Champaign Urbana, İL

Executive Summary:

The efficient and accurate installation of large precast bridge components is critical for accelerating bridge construction. Current crane operations for these components are often hampered by factors such as component size, weight, operator experience, jobsite complexity, and environmental conditions, leading to repetitive re-lifting, reduced efficiency, and significant labor requirements amidst an industry-wide shortage. Robotic technologies offer potential to automate crane operations, thereby enhancing installation accuracy and efficiency. This exploratory project developed and tested an AI-based framework for 3D crane lift path planning specifically for the robotic installation of precast bridge components, leveraging physics-based dynamic simulation. The proposed method fully considers the kinematic constraints of crane operation and is adaptive to diverse site configurations and structural designs within the simulated environment. To achieve this, a high-fidelity virtual bridge construction testbed was developed in MuJoCo, a physics engine chosen for its ability to model realistic dynamics and compatibility with reinforcement learning, where crane dynamics and precast concrete components were replicated at a 1:1 scale, incorporating randomized task parameters and obstacles to ensure generalizability and realism.

Building upon this simulation environment, a robotic AI agent was developed using Deep Reinforcement Learning (DRL) techniques, specifically the Proximal Policy Optimization (PPO) algorithm. This mobile crane agent was trained to place precast concrete components by learning an optimal decision policy that maximizes rewards for accuracy, safety, and efficiency, based on environment states such as lifting object location, target location, and obstacles. A crucial innovation in its training was the implementation of a two-phase approach: an initial phase focused on approach and collision avoidance by setting the target above the final position, enabling the model to learn navigation and obstacle avoidance; and a second phase, which seamlessly transitioned to precise placement on the bridge, emphasizing high accuracy once the concrete approached the initial placement area.

Simulation-based testing was conducted to evaluate the performance of the developed DRL algorithms. The final model achieved promising results within the simulated environment. After testing for 100 episodes, it achieves a 0 collision count and a 100% success rate, highlighting safety and reliability. The average placement accuracy is 0.2184 meters (Euclidean distance), with minimal component differences (X: 0.1367 m, Y: 0.1591 m, Z: 0.0608 m), and an orientation accuracy is 6.5803 degrees. The average path length traversed was 14.5256 meters, and the robotic lifting time averaged 2.35 seconds (in simulation environment), representing a significant improvement compared to a simulated human lifting time of 34.86 seconds.

This project shows the feasibility and substantial benefits of using AI-based robotic technologies for precast component installation in transportation infrastructure, specifically through advanced physics-based simulations and a multi-phase reinforcement learning strategy. The developed framework establishes a technical foundation that can be extended and potentially implemented in real-world construction projects with complex conditions, thereby improving productivity and reducing human effort.

This project unequivocally proves the feasibility and substantial benefits of using Al-based robotic technologies for precast component installation in transportation infrastructure, specifically through advanced physics-based simulations and a multi-phase reinforcement learning strategy. The developed framework establishes a robust technical foundation that can be extended and potentially implemented in real-world construction projects with complex conditions, thereby significantly improving productivity and reducing human effort.

Table of Contents

1.	Problem description:	7
2.	Background (including literature review):	7
3.	Research scope and objectives:	8
4.	Research description:	<u>c</u>
5.	Project results:	12
6.	Conclusions and recommendations:	13
7.	Practical application/impact on transportation infrastructure:	15
8.	References:	16
9.	Acknowledgements	17

1. Problem description:

Precast bridge components, such as girders, decks, and columns, are extensively utilized in modern construction to facilitate accelerated bridge construction (ABC). This approach offers significant advantages over traditional cast-in-place methods by improving overall efficiency, conserving labor resources, and minimizing traffic interruptions. The successful implementation of ABC heavily relies on the accurate and rapid installation of these prefabricated components to ensure overall project quality and productivity. In typical construction scenarios, large prefabricated structural components are first transported by cranes to the installation location for initial rough positioning. Subsequently, the finetuning of the component's pose—its precise alignment with the target—requires collaborative effort from multiple ground workers. These workers then coordinate with the crane operator to guide the component into its final, exact position. This manual process, however, is subject to numerous variables that can severely impact the performance of crane operations. Factors such as the size and weight of the lifting components, the experience level of the crane operator, the inherent complexity of the jobsite, and dynamic outdoor environmental conditions all play a significant role. These variables frequently lead to repetitive re-lifting and adjustments, which are time-consuming and consequently reduce overall construction efficiency. Positional inaccuracies of a few centimeters are frequently observed, failing to meet design requirements [1]. Current installation methods often rely on visual observation and tools like total stations, which are inaccurate and time-consuming, necessitating significant manpower. Crane operators typically depend on workers' gestures or voices for guidance [2].

Recognizing these challenges, robotic technologies have emerged with considerable potential to enhance the accuracy and efficiency of precast component installation through the automation of crane operations. Studies have shown that even partial automation of a tower crane, or the use of simple observation devices, can lead to substantial reductions in lifting time, ranging from 10% to 50% [3]. While existing research has developed methods for automated crane path planning, often seeking computationally optimal shortest paths, these approaches frequently overlook the inherent properties and kinematic constraints of the crane itself. More recently, AI-based approaches have gained attention for crane path planning due to their adaptability to diverse environments and superior generalization capabilities. However, the majority of this research has been concentrated on vertical projects in the building sector, leaving automated crane path planning for robotic installation in transportation infrastructure largely unexplored.

Considering the substantial scale of precast components and the complex site configurations typical of horizontal projects, such as bridge construction, it is critical to explore the feasibility of robotic approaches to generate optimal crane lifting paths. Such advancements are essential for achieving improved installation efficiency, enhanced safety, and greater accuracy in infrastructure development.

Background (including literature review):

Various research efforts have focused on developing methods for automated crane path planning, which typically involve searching for the shortest path in a controlled environment and planning a sequence of movements to transport objects between two points. However, many of these approaches, while computationally optimal based on mathematical principles, often disregard the specific properties and kinematic constraints inherent to the crane itself. The applicability of these solutions to real lifting tasks may be limited as algorithms often prioritize the shortest path without accounting for essential safety and practical considerations [4]. Beyond traditional lifting, new concepts for large-scale additive manufacturing in construction are also leveraging tower cranes for 3D printing, controlled by AI and deep reinforcement learning, to overcome limitations in build volume [5].

More recently, Al-based approaches, particularly Deep Reinforcement Learning (DRL), have seen increasing application in crane path planning. These methods offer significant advantages due to their ability to adapt to diverse environments and their superior generalization capabilities. Al-driven control of suspended loads by crane vessels, for instance, has been proposed to achieve automatic cargo

positioning and anti-sway control, enabling the system to compensate for cargo swing in varying conditions without requiring manual adjustment after training. This is particularly relevant as conventional control theories struggle with parameter adjustment for different system states and exhibit poor performance in the presence of nonlinearities [6]. For offshore cranes, DRL has been applied to minimize heave motion of payloads, showing superior performance compared to PID control [7]. Researchers have also explored intelligent control using Fuzzy Logic Control and Adaptive Neural Fuzzy Inference Systems for gantry cranes to minimize swing angles and track trajectories in 3D [8]. Furthermore, methods have been developed to proactively estimate collision risk by predicting worker trajectories and associated uncertainties, forming a basis for risk-aware robot path planning [9]. The integration of predicted movements of workers into DRL frameworks for robot path planning has also been explored to achieve safe and efficient human-robot collaboration in construction [10].

The majority of research in automated crane path planning has historically concentrated on vertical construction projects within the building sector, leaving robotic installation in transportation infrastructure largely unexplored. Considering the substantial scale of precast components and the complex site configurations in horizontal projects, such as bridge construction, it is imperative to investigate the feasibility of robotic approaches to generate optimal crane lifting paths. The design of appropriate reward functions for complex tower crane operations remains a significant challenge in RL, as poor design can lead to non-executable lifting paths. Factors such as operator competency and situational awareness are difficult to capture through manually designed rewards [4]. This project directly addresses this identified gap by focusing on Al-based solutions for crane operations in precast bridge component installation within a rigorous simulation environment, seeking to generate optimal crane lifting path for better installation efficiency and accuracy. Furthermore, research has demonstrated that integrated approaches, such as combining imitation learning with reinforcement learning, can effectively generate realistic and efficient lifting paths by mirroring crane operator behavior [4]. For precise installation, new vision-based systems are being developed to continuously track and estimate the 6-DOF pose of precast members in real-time, providing direct guidance to crane workers and reducing reliance on manual adjustments and repetitive re-lifting [2]. These methods aim to reduce positional inaccuracies that are common in traditional manual processes [1].

3. Research scope and objectives:

The objective of this exploratory project was to develop and test an Al-based framework for 3D crane lift path planning, specifically for the robotic installation of precast bridge components, via physics-based dynamic simulation. This innovative approach aimed to address critical challenges in traditional precast component installation, such as inefficiency, labor intensity, and the need for high precision in complex construction environments.

The proposed method will consider the kinematic constraints of crane operation and is adaptive to diverse site configurations and structural designs. Figure 1 illustrates the overall framework of the proposed research, detailing the interconnected components and processes of the Al-based system. If successful, the project will prove the feasibility and benefits of using robotic technologies for installation of precast components in transportation infrastructure. The developed framework will establish the technical foundation and could be potentially extended and implemented in real construction projects with complex design and site conditions, thus improving construction productivity and reducing human efforts.

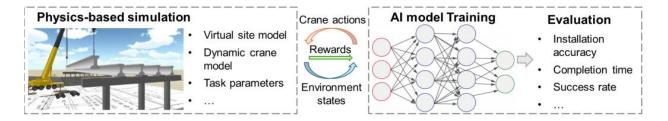


Figure 1: Overall framework of proposed research

The specific objectives of this research project were achieved through the successful completion of two interconnected tasks:

- Task 1. Physics-based simulation for crane operation. This objective involved creating a detailed and realistic physics-based simulation environment using the MuJoCo platform. The goal was to model real-world specifications of crane operations and precast bridge components at a 1:1 scale, accurately replicating crane dynamics, actuator behavior, and interactions with the environment to ensure the simulation's fidelity to real-world conditions. This objective was fully achieved, with a functional and realistic simulation environment established, including a detailed crane model (cabin, boom, hook actuators) and precast concrete components with realistic interactions and resolved issues like rope dynamics and rendering.
- Task 2. Development and Evaluation of Al Model for Crane Path Planning. This objective focused on both the development and training of advanced reinforcement learning algorithms tailored to enable the crane model to autonomously and reliably execute complex tasks such as lifting, moving, and precisely placing precast bridge components, alongside their experimental evaluation in simulation. A critical aspect involved refining reward functions to encourage safe, accurate, and efficient operations while minimizing collision risks. This objective was successfully met through the development and training of a DRL agent using the PPO algorithm, employing a novel two-phase training approach to guide the crane from approach and collision avoidance to precise final placement. Subsequent simulation-based testing and evaluation were conducted to validate the performance of the developed RL algorithms, including assessing the crane's accuracy, efficiency, and collision avoidance capabilities during simulated installations. This objective was successfully completed, with the final model demonstrating high performance metrics in the simulated environment, including zero collisions, 100% success rate, and significantly reduced lifting time compared to human operation.

4. Research description:

This project focused on developing and validating an AI-based framework for 3D crane lift path planning for the robotic installation of precast bridge components. The research methodology was structured around two interconnected tasks, leveraging a physics-based simulation environment and advanced reinforcement learning techniques.

4.1 Physics-based Crane Simulation Environment Development A high-fidelity virtual bridge construction testbed was developed using MuJoCo (Multi-Joint dynamics with Contact), a leading physics-based robotic simulation platform widely recognized for its accuracy in simulating complex robotic systems and multi-body interactions. MuJoCo was specifically chosen for its realistic physical dynamics, compatibility with reinforcement learning algorithms, and flexibility in designing custom environments, making it ideal for replicating crane operations in precast bridge component installation.

Within this custom simulation environment, real-world precast concrete bridge designs and site configurations were considered in 3D. Cranes were modeled on a 1:1 scale, incorporating their actual geometry and specifications, such as the speed and range of swinging, to build a realistic crane control

model. The crane model included a cabin, boom, and hook actuators, with enhancements like resolving a wrap-around issue, adopting motor-based actuators for improved control, and adding a joint to separate the boom and hook for more accurate crane dynamics. The hook and concrete were redesigned with ropes for realistic interactions, and rendering issues were fixed along with refined joint velocity calculations. This task was successfully completed at 100%.

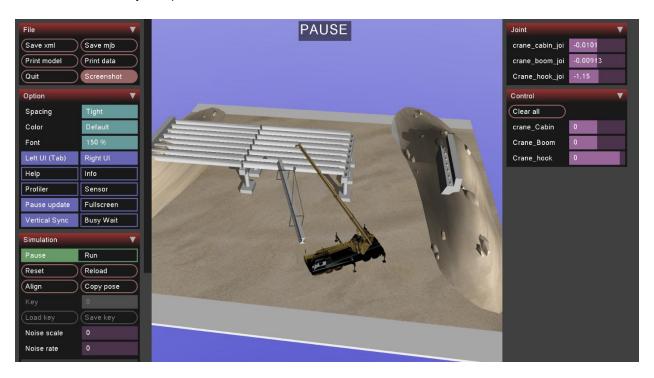


Figure 2: The Initial Simulation Environment in MuJoCo.

- **4.2 Development and Evaluation of Al Model for Crane Path Planning** This task focused on developing and training a robot (i.e., crane) Al agent based on Deep Reinforcement Learning (DRL) techniques, enabling it to interact with the construction site to learn optimal lift paths while considering site configurations (e.g., task, obstacles) and their physical and mechanical properties and constraints.
- **4.2.1 Environment Preparation for RL** The reinforcement learning environment was prepared using the Proximal Policy Optimization (PPO) algorithm within the custom MuJoCo simulation. The path planning problem was modeled as a Markov decision process, where the crane selects its actions based on environment states.
- **4.2.2 States** The observation space provided comprehensive information about the crane's configuration and its relation to the installation target. This included the crane's concrete position (x, y, z coordinates from gripper_position), the target position, joint positions, joint velocities, and the concrete's orientation as Euler angles derived from its quaternion.
- **4.2.3 Actions (Control Variables)** The action space consisted of control inputs to the crane's actuators: jib slewing speed, hook hoisting speed, and rotating cabin. These actions, defined within specified bounds, allowed the agent to manipulate the crane's position and orientation during lifting and placement tasks.
- **4.2.4 Reward Function and Training** After executing an action, the environment transitions to the next state, and the robot receives a reward. The primary goal of the robot was to learn an optimal decision policy to find a safe and efficient lift path from its initial location to a known destination by maximizing this reward. The reward function was designed to consider three critical factors: 1) accuracy (distance between final

position and target position), 2) safety (distance between object and obstacles), and 3) efficiency (total time steps used). The reward encouraged minimizing the distance between the concrete and the target (using a hyperbolic tangent function), maintaining a desired concrete angle (e.g., 90° vertical), and penalizing collisions with the floor or bridge. This problem was solved via DRL models, specifically PPO.

4.2.5 Two-Phase Training Approach A novel two-phase training approach was implemented to guide the crane agent in placing the precast concrete accurately:

- 1. Phase One (Approach & Collision Avoidance): In this initial phase, the target placement area was intentionally set above the final desired position. This strategy allowed the model to first learn how to navigate the environment and effectively avoid collisions with surrounding elements, such as the bridge structure and the ground, as it brought the precast concrete into the general vicinity of the target.
- 2. Phase Two (Precise Placement): Once the precast concrete approaches the top of this initial placement area, the training seamlessly transitioned to the next phase. In Phase Two, the objective shifted to moving the precast concrete to the exact desired final placement position on the bridge, with a strong focus on achieving high precision in both position and orientation. Through training from the simulations generated in Task 1, the crane was able to offer optimal sequential decision-making for lift path planning, given specific original and target locations as well as the current environmental status. This task was successfully completed at 100%.

4.2.6 Experiment Setup and Performance Metrics.

To evaluate the developed reinforcement learning algorithms, experiments were setup in MuJoCo simulation, and performance was assessed using a suite of quantitative metrics.

The training process for the DRL agent involved approximately 3800 iterations and required 96 hours of computational time. In the context of this training, an iteration represents a complete cycle of data collection from the environment and subsequent policy updating. Specifically, within each iteration, the agent interacted with the simulation environment for a predetermined number of steps (individual time-step interactions, where the agent takes an action, the environment progresses, and a reward is received). These steps were aggregated into batches, which were then used to update the agent's neural network policy. The max_timesteps_per_episode hyperparameter set the maximum number of steps an agent could take within a single episode. This iterative approach allowed for continuous policy refinement based on accumulated experience from these environmental steps. Upon completion of training, the model's performance was tested over 100 independent episodes. The results presented in Section 5 reflect the average performance across these test episodes.

The primary performance metrics used to evaluate the crane agent's effectiveness were defined and calculated as follows:

- **Collision Count:** This metric directly measures the safety performance of the crane, with the objective of achieving zero collisions with any environmental elements (e.g., bridge, ground) during lifting and placement tasks.
- Success Rate (%): Defined as the percentage of lifting tasks that the crane agent successfully complete. A task could fail due to various reasons, such as unhandled collisions, exceeding time limits, or inability to reach the target position. The aim was to achieve a 100% success rate for reliable operation.
- Placement Accuracy (m): This metric quantifies the precision of the concrete component's final positioning. It is measured as the Euclidean distance in meters between the center of the precast concrete and its desired target position. Differences along X, Y, and Z components were also tracked for detailed analysis.

- Orientation Accuracy (degrees): Essential for correct module alignment in bridge construction, this metric measures the angular difference in degrees between the actual final orientation of the concrete component and its desired target orientation.
- Path Length (m): Represents the total distance in meters traversed by the crane's hook during the
 entire lifting and placement operation. Shorter path lengths generally indicate higher operational
 efficiency.
- **Lifting Time (s):** This is a direct measure of operational efficiency and productivity. It quantifies the time in seconds required for the robotic crane to complete a full lifting task, from initial engagement to final placement. For comparative analysis, this was benchmarked against simulated human lifting times for the same tasks.

5. Project results:

This section details the key findings and performance metrics achieved by the Al-based crane control framework developed through the physics-based simulation. Upon the convergence of reward values, indicating the completion of the training phase, the model's performance was evaluated over 100 independent episodes. The results presented below represent the average performance across these 100 test episodes, demonstrating the robustness and efficacy of the developed RL agent.

- **5.1 Performance Metrics** The final model exhibited promising results in the simulated environment, achieving critical objectives related to safety, accuracy, and efficiency in the robotic installation of precast bridge components. The quantitative results are as follows:
 - Collision Count: The model achieved a 0 collision count across all 100 test episodes. This directly demonstrates the effectiveness of the reward function and training approach in prioritizing and ensuring safety by enabling the crane to navigate and place components without impacting environmental obstacles or the bridge structure itself.
 - **Success rate:** The framework maintained a 100% success rate, indicating that the crane agent successfully completed every lifting task in all 100 evaluated episodes. This metric highlights the reliability and consistency of the developed solution.
 - Placement Accuracy: The average placement accuracy, measured as the Euclidean distance between the concrete's final position and the target position, was 0.2184 meters. Detailed component differences were: X-component difference of 0.1367 m, Y-component difference of 0.1591 m, and Z-component difference of 0.0608 m. This precision is a direct measure of the model's ability to accurately position the precast components.
 - **Orientation Accuracy:** The average orientation accuracy was 6.5803 degrees. This metric is crucial for ensuring the correct alignment of precast modules for subsequent construction steps.
 - **Path Length:** The average path length traversed by the crane during the lifting and placement tasks was 14.5256 meters. Shorter paths generally indicate higher efficiency in crane operation.
 - **Lifting Time:** The average lifting time recorded for the robotic crane within the simulation environment was 2.35 seconds. This demonstrates remarkable efficiency in the simulated context, especially when compared to a simulated human lifting time of 34.86 seconds for the same task. It should be noted that this metric is based on the simulated time scale and does not directly represent real-world physical lifting time, serving instead as an indicator of potential efficiency gains.
- **5.2 Training Performance** The reinforcement learning agent underwent a training process, involving approximately 3800 iterations and requiring 96 hours of computational time. The learning progression of the AI agent is clearly illustrated by the cumulative episodic reward chart (Figure 3), which plots the "Iteration vs. Average Episodic Return." This chart demonstrates a consistent increase in average episodic return over iterations, indicating that the agent effectively learned to maximize its objectives through the reward function and successfully converged towards optimal policies. The initial fluctuations stabilize, and the reward values trend upwards, showcasing the learning efficiency and the model's ability to adapt and improve its performance over time.

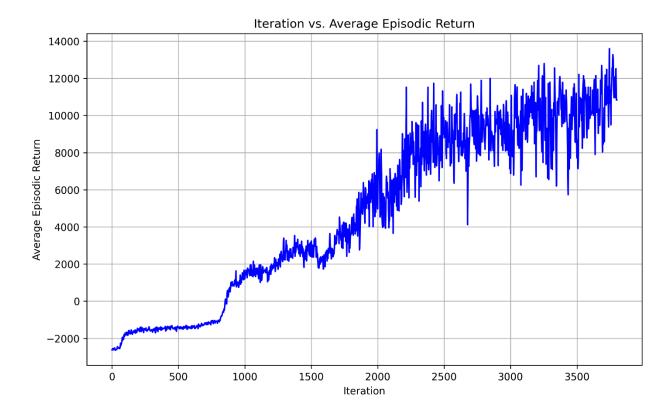


Figure 3: Iteration vs. Average Episodic Return Reward Chart

The successful implementation of the two-phase training approach was critical to these results. Phase One effectively guided the agent in safe navigation and collision avoidance, positioning the concrete above the target, while Phase Two refined its movements for highly precise final placement. This methodical training strategy was instrumental in achieving zero collisions and precise final positioning.

5.3 Visual Demonstration To further illustrate the capabilities of the developed Al-based framework, a video demonstrating the final movement of the RL agent successfully performing the precast concrete placement task is available. This visual evidence provides a clear understanding of the autonomous crane operation, and the precision achieved in the simulated environment. The model after training: https://youtu.be/tlDhIXluRdU

6. Conclusions and recommendations:

This exploratory project successfully developed and evaluated an AI-based framework for 3D crane lift path planning for the robotic installation of precast bridge components within a physics-based dynamic simulation environment. The research proved the feasibility and benefits of applying advanced AI, specifically DRL, to automate complex crane operations in transportation infrastructure construction.

6.1 Conclusions

A highly realistic and functional physics-based simulation environment was successfully developed in MuJoCo, accurately replicating crane dynamics and precast component interactions at a 1:1 scale. This environment proved to be a reliable platform for training and evaluating the AI agent, demonstrating its capability to model complex construction scenarios. The developed DRL agent, utilizing the PPO algorithm and a novel two-phase training approach, effectively learned to autonomously control the mobile crane for precast concrete placement. This model achieved a zero collision count and a 100% success rate across

100 test episodes, highlighting the agent's robust ability to safely navigate and complete tasks without errors within the simulated environment. This outcome is crucial for addressing safety concerns and improving reliability in construction operations. The robotic crane demonstrated efficiency in completing lifting tasks, with an average time of 2.3520 seconds compared to a simulated human lifting time of 34.8 seconds for the same task. This indicates the significant potential for increased productivity through robotic automation in precast installation within a controlled environment. The average placement accuracy of 0.2184 meters (Euclidean distance) and orientation accuracy of 6.5803 degrees showcase the model's capability for precise component positioning, which is vital for quality assurance in bridge construction. Finally, the two-phase training strategy proved highly effective in guiding the agent from general approach and collision avoidance to precise final placement, offering a structured and efficient method for training complex robotic tasks.

6.2 Recommendations for Future Research

While this exploratory project established a technical foundation in simulation, several directions for future research are recommended to advance the technology towards real-world implementation:

- Real-World Validation and Implementation: The most critical next step is to transition the validated simulation framework to real-world scenarios. This would involve adapting the control algorithms to physical crane systems, addressing sensory feedback (e.g., LiDAR, cameras, force sensors), and accounting for real-world environmental uncertainties not fully captured in simulation (e.g., wind effects, ground vibrations).
- Refinement of Reward Functions for Real-World Complexity: The current reward function effectively guided learning in simulation. Future work should explore more sophisticated reward functions that account for real-world variables such as energy consumption, wear and tear on equipment, dynamic obstacles (e.g., moving workers or vehicles), and real-time site changes.
- Integration with Site Data: Developing methods to integrate real-time data from construction sites (e.g., 3D scans of actual bridge components and site conditions) directly into the AI framework would enhance adaptability and robustness. This would allow the system to adjust path planning in real-time to unforeseen variations or changes on site.
- **Human-Robot Collaboration:** Exploring frameworks for safe and efficient human-robot collaboration could be beneficial. While full automation is the goal, initial implementations may require human oversight or interaction, and understanding how the Al can optimally collaborate with human workers is important.
- Generalization to Diverse Bridge Types and Site Configurations: While the simulation setup allowed for randomization, future work could specifically focus on testing and adapting the framework for a wider variety of precast bridge component types, increasingly complex bridge geometries, and also diverse site configurations.
- Robustness to Sensor Noise and Malfunctions: Investigating the framework's resilience to sensor noise, delays, or even partial sensor failures would be crucial for practical deployment. Techniques like robust control or sensor fusion could be explored.
- **6.3 Challenges, Considerations, and Potential Barriers** Translating this successful simulation-based research to practical field applications will involve several challenges:
 - Computational Resources: Training complex DRL models for real-world applications can be computationally intensive, requiring significant hardware and time. Optimizing training efficiency and exploring transfer learning techniques will be crucial.
 - Safety Criticality: Implementing autonomous cranes on active construction sites involves high safety risks. Rigorous testing protocols, fail-safe mechanisms, and regulatory approvals will be paramount.
 - Data Collection in Real-World: Collecting sufficient, high-quality real-world data for training and validation can be expensive and time-consuming. Sim-to-real transfer learning techniques will be essential to bridge this gap.

- **Integration with Existing Equipment:** Retrofitting existing cranes with robotic control systems and ensuring compatibility with diverse equipment models could be a significant engineering challenge.
- Acceptance and Workforce Transition: Overcoming resistance to new technologies from the
 construction workforce and developing new training programs for operators and technicians will be
 important for adoption.
- **Dynamic and Unstructured Environments:** Construction sites are inherently dynamic and unstructured, presenting complexities that are difficult to fully capture in simulation. The system must be robust enough to handle unexpected changes and unmodeled disturbances.

Addressing these recommendations and challenges will be key to unlocking the full potential of Al-based robotic crane systems in transforming transportation infrastructure construction.

7. Practical application/impact on transportation infrastructure:

The successful development and validation of an Al-based framework for 3D crane lift path planning within a high-fidelity simulation environment holds significant practical application and direct impact on the future of transportation infrastructure construction. This research directly addresses critical challenges in current construction practices, offering solutions that promise to enhance efficiency, safety, and precision.

7.1 Real-World Impact and Feasibility

The primary impact of this research is its potential to revolutionize the installation of precast bridge components. Currently, this process is labor-intensive, time-consuming due to repetitive re-lifting, and susceptible to human error, all exacerbated by a significant labor shortage in the construction industry. The developed Al-based system demonstrates the feasibility of automating these complex operations, offering a viable solution to these challenges.

- Improved Efficiency and Productivity: The robotic crane, through its autonomous operation, achieved an average lifting time of 2.3520 seconds in simulation, a remarkable improvement compared to the 34.86 seconds for simulated human operation. This translates to a potential for drastically accelerated project timelines and increased throughput in real-world bridge construction. Reducing the time components spend suspended by cranes can also alleviate traffic disruptions, a major benefit for transportation projects.
- Enhanced Safety: The project's achievement of zero collisions and a 100% success rate in all simulated test episodes directly underscores the potential for significantly improved safety on construction sites. By minimizing human intervention in high-risk lifting operations, the framework can reduce accidents and injuries associated with manual crane adjustments and close coordination between workers and heavy machinery.
- Increased Precision and Quality: The demonstrated placement accuracy of 0.2184 meters and
 orientation accuracy of 6.5803 degrees in simulation prove the capability of AI to achieve a level of
 precision crucial for the structural integrity and long-term performance of precast bridge
 assemblies. This precision can lead to higher quality infrastructure and reduce rework.
- Addressing Labor Shortages: By automating repetitive and physically demanding tasks, this
 technology offers a strategic solution to the ongoing labor shortage in the construction sector. It
 allows skilled personnel to be reallocated to more complex or supervisory roles, optimizing human
 capital.
- Adaptability and Generalization: The training methodology, which involved randomizing task
 parameters and obstacles within the simulation, enables the AI model to adapt to diverse site
 configurations and structural designs. This built-in generalization capability is vital for real-world
 application, where every construction site presents unique challenges.

7.2 Potential Implementation Plans

Transitioning this simulation-validated framework to real-world deployment would involve a phased approach:

- 1. **Pilot Projects with Controlled Environments:** Initial real-world implementations could focus on controlled construction sites or specific, less complex bridge projects. This would allow for close monitoring and validation of the Al's performance under actual field conditions.
- 2. **Sensor Integration and Real-time Feedback:** Integrating advanced sensors (e.g., LiDAR, high-resolution cameras, GPS, force sensors) onto physical cranes would provide the necessary real-time environmental and component data for the AI to operate effectively. Developing robust data fusion techniques would be essential.
- 3. **Human-in-the-Loop Supervision:** Early real-world deployments might involve a "human-in-the-loop" system, where human operators maintain supervisory control and can intervene if necessary. This allows for a gradual transition and builds confidence in the autonomous system.
- 4. **Hardware Adaptation and Interface Development:** Collaboration with crane manufacturers and construction equipment providers would be necessary to develop standardized interfaces and potentially modify existing crane hardware to accommodate the robotic control system.
- 5. **Regulatory and Safety Standard Development:** Working with industry bodies and regulatory agencies to establish new safety standards and certifications for autonomous crane operations would be a critical step for widespread adoption.
- 6. **Workforce Training and Skill Development:** Developing new training programs for construction workers and engineers to manage, operate, and maintain Al-driven robotic crane systems would be essential to facilitate a smooth transition and ensure workforce readiness.

By addressing these implementation steps, the insights and framework developed in this project can pave the way for a more automated, efficient, safer, and precise future for transportation infrastructure construction.

8. References:

- [1] Liu, C., Wu, J., Jiang, X., Gu, Y., Xie, L., & Huang, Z. (2024). Automatic assembly of prefabricated components based on vision-guided robot. *Automation in Construction*, 162, 105385.
- [2] Cheng, Y., Lin, F., Wang, W., & Zhang, J. (2022). Vision-based trajectory monitoring for assembly alignment of precast concrete bridge components. *Automation in Construction*, 140, 104350.
- [3] Cho, S., & Han, S. (2022). Reinforcement learning-based simulation and automation for tower crane 3D lift planning. *Automation in Construction*, 144, 104620.
- [4] Wang, Z., Huang, C., Yao, B., & Li, X. (2024). Integrated reinforcement and imitation learning for tower crane lift path planning. *Automation in Construction*, 165, 105568.
- [5] Parisi, F., Sangiorgio, V., Parisi, N., Mangini, A. M., Fanti, M. P., & Adam, J. M. (2024). A new concept for large additive manufacturing in construction: tower crane-based 3D printing controlled by deep reinforcement learning. *Construction Innovation*, 24(1), 8-32.
- [6] Makarov, O., & Harada, T. (2024, March). Reinforcement Learning for Al-Positioning of Suspended Load By a Crane Vessel. In 2024 10th International Conference on Electrical Engineering, Control and Robotics (EECR) (pp. 150-154). IEEE.
- [7] Bae, J. H., Cha, J. H., & Ha, S. (2023). Heave reduction of payload through crane control based on deep reinforcement learning using dual offshore cranes. *Journal of Computational Design and Engineering*, 10(1), 414-424.
- [8] Fihakhir, A. M., & Guerbouz, A. (2022). Intelligent control of industrial gantry crane model" 3D Crane. *International Journal of Emerging Trends in Engineering Research (IJETER)*, 10(10).
- [9] Cai, J., Du, A., & Li, S. (2021). Prediction-enabled collision risk estimation for safe human-robot collaboration on unstructured and dynamic construction sites. In *Computing in Civil Engineering 2021* (pp. 34-41).
- [10] Cai, J., Du, A., Liang, X., & Li, S. (2023). Prediction-based path planning for safe and efficient human–robot collaboration in construction via deep reinforcement learning. *Journal of Computing in Civil Engineering*, 37(1), 04022046.

9. Acknowledgements

This research was funded by the Transportation Infrastructure Precast Innovation Center (TRANS-IPIC), Tier 1 University Transportation Center (UTC) via Project UT-24-EP-02. The authors gratefully acknowledge the support. Any opinions, findings, recommendations, and conclusions in this paper are those of the authors and do not necessarily reflect the views of TRANS-IPIC and The University of Texas at San Antonio.