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Project Description:
1. Research Plan - Statement of Problem

The American Road and Transportation Builders Association reported that 36% of all U.S. bridges
required major repair work or replacement (ARTBA 2023; FHWA 2024). To address this, the US
federal government enacted the Infrastructure Investment and Jobs Act in 2023 that invests over
$300 billion in replacing and repairing America’s aging roads and bridges (The White House 2023).
This presents DOTs with a number of challenges including how to (1) accurately predict the condition
of aging conventional cast-in-place and precast bridges to improve their durability and extend their
life; (2) analyze and compare during the early design phase the durability, safety, mobility,
sustainability, and construction cost of alternative bridge construction methods including conventional
cast-in-place, precast bridge elements or systems, precast lateral slide, and precast self-propelled
modular transporter, for each planned project based on its specific conditions and requirements; and
(3) quantify and optimize during the preconstruction phase the impact of important construction
decisions on multiple objectives including safety, mobility, sustainability, and construction cost, as
shown in Figure 1.
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Figure 1. Proposed Decision Support Tool and Optimization Model
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2. Research Plan - Summary of Project Activities (Tasks):

Task 1: Develop novel machine learning models to accurately predict the condition rates of both
conventional cast-in-place and precast bridges based on a wide range of variables including bridge
age, length, design type, average daily traffic, and design load.

Task 2: Create a practical decision support tool (DST) that can be used by DOT planners during the
early design phase to analyze and compare the durability, safety, sustainability, mobility, and
construction cost of conventional cast-in-place and precast bridges.

Task 3: Expand the developed multi-objective optimization model in the first year to include safety
and sustainability to support State DOTs during the preconstruction phase in identifying optimal

bridge construction decisions such as delivery day, transportation, and on-site installation of bridge
PC modules to enhance safety, sustainability, and mobility while minimizing total construction cost.

Project Progress:
3. Progress for each research task

Task 1 Progress [90% completed]. Last quarter, the research team continued working on the first
research task that focused on developing novel machine learning models for predicting the condition
rates and deterioration of conventional cast-in-place and precast concrete deck bridges during the
early design phase. The development of these models focused on the following four main phases.
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a. Data Collection

This phase has been completed and focused on identifying and collecting all data influencing bridge
deck condition ratings and deterioration that are available in the National Bridge Inventory (NBI)
database (FHWA 2025). The NBI contains data on 624,194 bridges across all 50 U.S. states, with
108 items recorded for each bridge. Although the database includes bridge records from 1697 to
2024, the data collected in this task focused on only bridges that were constructed since 1960. Of
these bridges, 61% are concrete cast-in-place deck bridges, 12% are precast concrete deck bridges,
20% are culverts, and 7% utilize other deck materials such as timber, steel, or aluminum, as shown in
Figure 2. Since the scope of this study is limited to predicting the condition ratings of concrete deck
bridges, only cast-in-place and precast concrete bridges were considered. Accordingly, the collected
dataset includes 286,034 bridge projects.

Precast Concréte
12.42%
48,421

Other
6.93%
27,020

Culvert
19.69%
76,768

Figure 2. Distribution of NBI Bridges by Deck Type

Based on a comprehensive literature review (Assaad et al. 2020; Bolukbasi et al. 2004; Rashidi
Nasab and Elzarka 2023; Srikanth and Arockiasamy 2020; Tolliver et al. 2011; Winoto and Roy
2023), 32 data items were identified to have an impact on the deck condition rating. These items can
be categorized into 7 main groups: location, time, dimensions, condition ratings, traffic and load,
service and classification, and other/protection, as shown in

Table 1. Some of these items are directly incorporated into the predictive models, while others are
used to generate derived variables. For example, the bridge age is calculated based on its
construction and maintenance history, as shown in Eq. (1) and (2).

Table 1. Collected data from NBI database

Category Fields
Location State Code
Ti Year Built, Year of Improvement, Year Reconstructed, Date of Inspection,
ime X
Inspection Frequency (Months)
Approach Width (m), Max Span Length (m), Structure Length (m), Deck
Dimensions Width (m), Deck Area (m?), Main Unit Spans (count), Degrees of Skew,
Structure Flared (Y/N)
Condition Deck Condition, Superstructure Condition, Substructure Condition,
Ratings Channel Condition
Traffic & Load ADT (Average Daily Traffic), % ADT Trucks, Design Load
Service & Service On, Service Under, Structure Kind (Material), Structure Type,
Classification Deck Structure Type, Approach Kind, Approach Type
Other / Work Proposed, Surface Type (Protective System), Membrane Type, Deck
Protection Protection
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IF Type of Work == Bridge or Deck Replacement: (1)
Bridge Age = Date of Inspection—max (Year Built, Year Reconstructed, Year of Improvement)

Else: (2)
Bridge Age = Date of Inspection—max (Year Built Year Reconstructed)

b. Data Preprocessing

This phase has been completed and focused on preprocessing the raw data that was collected in the
previous phase to ensure its quality and usability. This was accomplished in five main steps that
focused on (1) identifying predicted and predictor variables, (2) categorizing predictor variables to
categorical and numerical variables, (3) cleaning collected data by identifying and deleting outliers,
(4) transforming predictor variables to enhance their performance in the machine learning models,
and (5) dividing the transformed data into training and testing sets.

First, the deck condition rate was identified as the predicted variable with a numerical value that
ranges from 1 to 9. A deck condition rate of 1 and 9 represents a poor and excellent condition rate,
respectively. Twenty-four predictor variables were identified to have a potential impact on deck
condition rate including bridge age, deck length, deck width, number of spans, maximum span length,
degree of skew, deck area, superstructure condition rate, substructure condition rate, channel
condition rate, average daily traffic (ADT), percentage of truck in ADT, location (state), service on,
service under, design load, deck type, structure material, operating rating, inventory rating, deck
protection type, and membrane protection type, as shown in Figure 3.

Second, the identified predictor variables were categorized in two main groups based on their types:
numerical and categorical. Numerical variables represent all variables that have measurable quantity
such as deck length and width, while categorical variables represent attributes that can take one of
several discrete values, such as deck type that can be classified as concrete cast-in-place or precast
concrete, as shown in Figure 3.
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Figure 3. Predictor and predicted variables

Third, the collected dataset was cleaned by identifying and removing outliers to enhance model
performance to reduce noise and minimize prediction error. For example, the NBI dataset included
bridge projects with a number of spans ranging from 0 to 900. Since only 1,136 out of 286,034
projects either had more than 30 spans or were reported with zero spans, these cases were identified
as outliers and excluded. The same procedure was applied to all numerical variables. In addition, the
dataset was cleaned by removing data items that were incorrectly entered. For instance, the design
load column should contain categorical values from 0 to 9, where each value represents the live load
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for which the structure was designed (e.g., 1 = MS 9, 2 = MS 13.5). All bridges with non-numeric
entries (e.g., A, B, C) for this variable were therefore excluded. In total, this cleaning process resulted
in the removal of 20,587 outlier bridge projects.

Fourth, the categorical and numerical variables were transformed to enhance the performance of the
machine learning models using the min—-max normalization technique for all numerical variables, and
the one hot encoding method for all categorical variables (Daly et al. 2016; Hardy 1993). Fifth, the
transformed data were divided into training and testing sets that include 80% and 20% of the cleaned
dataset, respectively.

c. Model Development

This phase focused on the development of six ML models that can be used to estimate the condition
rate and deterioration of conventional and precast deck bridges during the early design phase. These
models were developed using six ML algorithms that are widely used for this type of prediction
including Ordinary Least Square (OLS), LASSO Regression (LR), Ridge Regression (RR), Random
Forest (RF), Gradient Boosting (GB), and Extreme Gradient Boosting (XGBoost). Each model was
trained using the training set identified in the previous phase.

d. Model Evaluation

The performance of the developed ML models was evaluated and validated using the training and
testing sets, respectively. First, the performance of the developed models was evaluated using the
training set by analyzing their coefficient of determination (R?) values. This analysis indicates that the
Gradient Boosting (GB) model achieved the highest performance with (R?)values of 94.04%, as
shown in Table 2.

Second, the performance of the developed ML models was validated using the testing set by
comparing their predicted values to the true values. This validation analysis was conducted using four
primary metrics: mean absolute percentage error (MAPE), mean absolute error (MAE), median
absolute error (Med AE), and root mean squared error (RMSE). The results show that the XGBoost
model outperformed the other models in all four metrics of mean absolute percentage error (MAPE =
5.93%), mean absolute error (MAE = 0.36), median absolute error (Med. AE = 0.21); and root mean
square error (RMSE = 0.55), as shown in Table 2.

Table 2. Performance of developed machine learning predictive models

Developed ML Training Dataset Testing Dataset
Algorithms R2 (%) MAPE (%) MAE  Med AE ~ RMSE
oLsS 47.8 7.51 047 0.35 0.63
LR 47.8 7.47 0.46 0.34 0.62
RR 49.04 7.90 0.48 0.36 0.66
RFR 93.43 6.29 0.39 0.25 0.57
GB 94.06 6.36 0.40 0.24 0.57
XGBoost 90.42 5.93 0.36 0.21 0.55

Task 2 Progress [40% completed]. Last quarter, the research team started the development of a
practical decision support tool (DST) designed to assist DOT planners during the early design phase
in analyzing and comparing the durability, safety, sustainability, mobility, and construction cost of
conventional cast-in-place and precast bridges. The DST will consist of five modules, each designed
to evaluate the performance of alternative construction methods in five key objectives: (1)
construction cost, using the ML models developed in Year 1 to predict the cost of alternative bridge
construction methods (Helaly et al. 2025); (2) durability, using the ML models developed in the first
task of Year 2 to predict the condition rating of alternative concrete deck bridges; (3) mobility, by
calculating total vehicle delay hours during construction using the FHWA procedure in the Road User
Cost Calculator tool (FHWA 2022); (4) safety, by estimating the number of work zone crashes using
Safety Performance Functions (SPFs) developed by FHWA and AASHTO (Gayah et al. 2024; Kolody
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et al. 2022); and (5) sustainability, by predicting total project greenhouse gas emissions using the
FHWA Infrastructure Carbon Estimator methodology (Gallivan et al. 2014). The developed DST is
expected to provide DOT planners with a comprehensive framework for evaluating trade-offs among
competing objectives during the early design phase, as shown in Figure 1.

Task 3 Progress [100% completed]. The research team developed a multi-objective optimization
model to support State DOTs in generating and evaluating optimal trade-offs among four key
objectives: maximizing safety, mobility, and sustainability while minimizing the total cost of precast
bridge construction projects during the preconstruction phase. The development process involved
three main stages: (1) model formulation, which identified all relevant decision variables, objective
functions, and constraints; (2) model implementation, which employed the Nondominated Sorting
Genetic Algorithm Il (NSGA-II) supported by four additional modules; and (3) model evaluation, which
analyzed a case study to demonstrate the model capabilities in optimizing the planning of precast
bridge construction projects. The outcomes of this task were documented in a manuscript that was
submitted to the ASCE Journal of Construction Engineering and Management on August 1, 2025.

4. Percent of research project completed

75% of total project is completed through the end of this quarter:
Task 1: 90% completed.
Task 2: 40% completed.
Task 3: 100% completed.

5. Expected progress for next quarter

In the next quarter, the research team will complete the refinement of the developed machine learning
(ML) models to further improve their accuracy in predicting the condition rating and deterioration of
concrete deck bridge projects. Additionally, the team will finalize the development of the decision
support tool (DST) to ensure it is fully functional and capable of comparing and analyzing alternative
construction methods during the early design phase. The DST is expected to enable DOT planners to
conduct a comprehensive evaluation of bridge durability, safety, sustainability, mobility, and
construction cost for conventional cast-in-place and precast bridges.

6. Educational outreach and workforce development

The educational and workforce development (EWD) activities this quarter focused on: (1) continuing
to enhance the analytical and research skills of a female PhD student, the lead research assistant, in
collecting and analyzing bridge construction data from various databases and developing machine
learning and multi-objective optimization models; (2) developing educational modules for two
construction engineering courses (CEE 421 and CEE 526), which the Pl and Co-PI teach to over 120
students annually; and (3) attending the TRANS-IPIC monthly webinars.

7. Technology Transfer

The research team is currently developing (1) novel machine learning models to predict the condition
rates of concrete deck bridge projects during the early design phase; (2) a practical decision support
tool (DST) to analyze and compare the durability, safety, sustainability, mobility, and construction cost
of conventional cast-in-place and PC bridges during the early design phase, and; (3) a multi-objective
optimization model to optimize the planning of bridge projects to maximize safety, mobility, and
sustainability, while minimizing the total construction cost.

Research Contribution:
8. Papers that include TRANS-IPIC UTC in the acknowledgments section:

The research team successfully published two papers in leading construction engineering and
management journals; a conference paper, which was included in the proceedings of the ASCE
Construction Research Congress 2025; and submitted a third manuscript that is currently under
review. The publications are as follows:

1. Helaly, H., K. EI-Rayes, E.J. Ignacio, and H. J. Joan. (January 2025). “Comparison of
Machine Learning Algorithms for Estimating Cost of Conventional and Accelerated Bridge
Construction Methods During Early Design Phase” Journal of Construction Engineering and
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Management, ASCE. https://doi.org/https://ascelibrary.org/doi/10.1061/JCEMD4.COENG-
15934.

2. Helaly, H., K. EI-Rayes, and E.J. Ignacio. (February 2025). “Predictive Models to Estimate
Construction and Life Cycle Cost of Conventional and Prefabricated Bridges During Early
Design Phase.” Canadian Journal of Civil Engineering. https://doi.org/10.1139/cjce-2023-
0493.

3. Helaly, H., K. EI-Rayes, and E.J. Ignacio. (July 2025). “Machine Learning Models for
Estimating Construction Costs of Conventional and Accelerated Bridge Construction
Methods” ASCE Construction Research Congress (CRC) 2025, Modular and Office
Construction Summit (MOC).

4. Helaly, H., K. EI-Rayes, and E.J. Ignacio. (under review). “Multi-Objective Optimization for the
Planning of Prefabricated Bridge Construction Projects” Submitted to the Journal of
Construction Engineering and Management, ASCE in August 2025.

9. Presentations and Posters of TRANS-IPIC funded research:
None

10. Please list any other events or activities that highlights the work of TRANS-IPIC
occurring at your university (please include any pictures or figures you may have).
Similarly, please list any references to TRANS-IPIC in the news or interviews from your
research.

None
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Appendix 1: Research Activities, leadership, and awards (cumulative, since the start of
the project)

A

Number of presentations at academic and industry conferences and workshops of UTC

findings

o No. = Four presentations including (1) oral presentation on April 22, during the first day of the
TRANS-IPIC Workshop 2025; (2) poster presentation on April 23, during the second day of the
TRANS-IPIC Workshop 2025; (3) online presentation during the TRANS-IPIC monthly webinar on
May 21, 2025; (4) presentation at the ASCE Construction Research Congress (CRC) 2025,
Modular and Offsite Construction (MOC) Summit in July 2025.

Number of peer-reviewed publications submitted based on outcomes of UTC funded
projects
o No. = Three peer-reviewed publications submitted based on outcomes of UTC funded

projects. Two peer-reviewed papers have been published in (1) Journal of Construction
Engineering and Management, ASCE in January 2025, and (2) Canadian Journal of Civil
Engineering in February 2025. A third manuscript was submitted to the Journal of
Construction Engineering and Management, ASCE in August 2025 and is currently under
review.

Number of peer-reviewed journal articles published by faculty.

o No. = Two published peer-reviewed papers that were published in in (1) Journal of Construction
Engineering and Management, ASCE in January 2025, and (2) Canadian Journal of Civil
Engineering in February 2025.

Number of peer-reviewed conference papers published by faculty.
o No. = One peer-reviewed conference paper published in the ASCE Construction Research
Congress (CRC) 2025, Modular and Office Construction Summit (MOC), July 2025

Number of TRANS-IPIC sponsored thesis or dissertations at the MS and PhD levels.

o No. MS thesis = None

o No. PhD dissertations = One ongoing PhD dissertation by Hadil Helaly

o No. citations of each of the above = four citations of the published journal papers listed in Section
C.

Number of research tools (lab equipment, models, software, test processes, etc.) developed

as part of TRANS-IPIC sponsored research

o Research Tool # 1= six developed machine learning models to estimate the construction cost of
conventional and precast bridge projects during the early design phase.

o Research Tool # 2= multi-objective optimization model to optimize the planning of bridge projects
to maximize safety, mobility, and sustainability, while minimizing construction cost.

o Research Tool # 3= ongoing machine learning models to predict the condition rates and
deterioration of bridge projects during the early design phase.

o Research Tool # 4= ongoing practical Decision Support Tool (DST) to facilitate the use of the
developed machine learning models by state DOTs and bridge planners during the early design
phase to analyze and compare the durability, safety, sustainability, mobility, and construction cost
of conventional cast-in-place and precast bridges.

Number of transportation-related professional and service organization committees that
TRANS-IPIC faculty researchers participate in or lead.
o Professional societies
¢ No. participated in = One at the ASCE Construction Research Congress (CRC) 2025,
Modular and Office Construction Summit (MOC) in July 2025
e No. lead = None
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o Advisory committees (No. participated in & No. led)
e No. participated in = None
e No. lead = None
o Conference Organizing Committees (No. participated in & No. led)
e No. participated in = None
e No. lead = None
o Editorial board of journals (No. participated in & No. led)
e No. participated in = None
e No. lead = None
o TRB committees (No. participated in & No. led)
e No. participated in = None
e No. lead = None

. Number of relevant awards received during the grant year
o No. awards received = None

Number of transportation related classes developed or modified as a result of TRANS-IPIC
funding.

o No. Undergraduate = 3

o No. Graduate = 4

Number of internships and full-time positions secured in the industry and government during
the grant year.

o No. of internships = None

o No. of full-time positions = None
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