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Project Description: 
1. Research Plan - Statement of Problem 
The American Road and Transportation Builders Association reported that 36% of all U.S. bridges 
required major repair work or replacement (ARTBA 2023; FHWA 2024). To address this, the US 
federal government enacted the Infrastructure Investment and Jobs Act in 2023 that invests over 
$300 billion in replacing and repairing America’s aging roads and bridges (The White House 2023). 
This presents DOTs with a number of challenges including how to (1) accurately predict the condition 
of aging conventional cast-in-place and precast bridges to improve their durability and extend their 
life; (2) analyze and compare during the early design phase the durability, safety, mobility, 
sustainability, and construction cost of alternative bridge construction methods including conventional 
cast-in-place, precast bridge elements or systems, precast lateral slide, and precast self-propelled 
modular transporter, for each planned project based on its specific conditions and requirements; and 
(3) quantify and optimize during the preconstruction phase the impact of important construction 
decisions on multiple objectives including safety, mobility, sustainability, and construction cost, as 
shown in Figure 1. 

 
Figure 1. Proposed Decision Support Tool and Optimization Model 

2. Research Plan - Summary of Project Activities (Tasks): 
Task 1: Develop novel machine learning models to accurately predict the condition rates of both 
conventional cast-in-place and precast bridges based on a wide range of variables including bridge 
age, length, design type, average daily traffic, and design load. 

Task 2: Create a practical decision support tool (DST) that can be used by DOT planners during the 
early design phase to analyze and compare the durability, safety, sustainability, mobility, and 
construction cost of conventional cast-in-place and precast bridges. 

Task 3: Expand the developed multi-objective optimization model in the first year to include safety 
and sustainability to support State DOTs during the preconstruction phase in identifying optimal 
bridge construction decisions such as delivery day, transportation, and on-site installation of bridge 
PC modules to enhance safety, sustainability, and mobility while minimizing total construction cost. 

Project Progress: 
3. Progress for each research task   
Task 1 Progress [90% completed]. Last quarter, the research team continued working on the first 
research task that focused on developing novel machine learning models for predicting the condition 
rates and deterioration of conventional cast-in-place and precast concrete deck bridges during the 
early design phase. The development of these models focused on the following four main phases. 
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a. Data Collection  
This phase has been completed and focused on identifying and collecting all data influencing bridge 
deck condition ratings and deterioration that are available in the National Bridge Inventory (NBI) 
database (FHWA 2025). The NBI contains data on 624,194 bridges across all 50 U.S. states, with 
108 items recorded for each bridge. Although the database includes bridge records from 1697 to 
2024, the data collected in this task focused on only bridges that were constructed since 1960. Of 
these bridges, 61% are concrete cast-in-place deck bridges, 12% are precast concrete deck bridges, 
20% are culverts, and 7% utilize other deck materials such as timber, steel, or aluminum, as shown in 
Figure 2. Since the scope of this study is limited to predicting the condition ratings of concrete deck 
bridges, only cast-in-place and precast concrete bridges were considered. Accordingly, the collected 
dataset includes 286,034 bridge projects. 

 
Figure 2. Distribution of NBI Bridges by Deck Type 

Based on a comprehensive literature review (Assaad et al. 2020; Bolukbasi et al. 2004; Rashidi 
Nasab and Elzarka 2023; Srikanth and Arockiasamy 2020; Tolliver et al. 2011; Winoto and Roy 
2023), 32 data items were identified to have an impact on the deck condition rating. These items can 
be categorized into 7 main groups: location, time, dimensions, condition ratings, traffic and load, 
service and classification, and other/protection, as shown in  

Table 1. Some of these items are directly incorporated into the predictive models, while others are 
used to generate derived variables. For example, the bridge age is calculated based on its 
construction and maintenance history, as shown in Eq. (1) and (2). 

Table 1. Collected data from NBI database 
Category Fields 

Location State Code 

Time Year Built, Year of Improvement, Year Reconstructed, Date of Inspection, 
Inspection Frequency (Months) 

Dimensions 
Approach Width (m), Max Span Length (m), Structure Length (m), Deck 
Width (m), Deck Area (m²), Main Unit Spans (count), Degrees of Skew, 
Structure Flared (Y/N) 

Condition 
Ratings 

Deck Condition, Superstructure Condition, Substructure Condition, 
Channel Condition 

Traffic & Load ADT (Average Daily Traffic), % ADT Trucks, Design Load 

Service & 
Classification 

Service On, Service Under, Structure Kind (Material), Structure Type, 
Deck Structure Type, Approach Kind, Approach Type 

Other / 
Protection 

Work Proposed, Surface Type (Protective System), Membrane Type, Deck 
Protection 
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IF	Type	of	Work	==	Bridge	or	Deck	Replacement:	
Bridge	Age	=	Date	of	Inspection−max	(Year	Built,	Year	Reconstructed,	Year	of	Improvement)	

	

(1) 

Else:	
Bridge	Age	=	Date	of	Inspection−max	(Year	Built,	Year	Reconstructed)	

(2) 

 
b. Data Preprocessing  
This phase has been completed and focused on preprocessing the raw data that was collected in the 
previous phase to ensure its quality and usability. This was accomplished in five main steps that 
focused on (1) identifying predicted and predictor variables, (2) categorizing predictor variables to 
categorical and numerical variables, (3) cleaning collected data by identifying and deleting outliers, 
(4) transforming predictor variables to enhance their performance in the machine learning models, 
and (5) dividing the transformed data into training and testing sets. 

First, the deck condition rate was identified as the predicted variable with a numerical value that 
ranges from 1 to 9. A deck condition rate of 1 and 9 represents a poor and excellent condition rate, 
respectively. Twenty-four predictor variables were identified to have a potential impact on deck 
condition rate including bridge age, deck length, deck width, number of spans, maximum span length, 
degree of skew, deck area, superstructure condition rate, substructure condition rate, channel 
condition rate, average daily traffic (ADT), percentage of truck in ADT, location (state), service on, 
service under, design load, deck type, structure material, operating rating, inventory rating, deck 
protection type, and membrane protection type, as shown in Figure 3. 

Second, the identified predictor variables were categorized in two main groups based on their types: 
numerical and categorical. Numerical variables represent all variables that have measurable quantity 
such as deck length and width, while categorical variables represent attributes that can take one of 
several discrete values, such as deck type that can be classified as concrete cast-in-place or precast 
concrete, as shown in Figure 3. 

 
Figure 3. Predictor and predicted variables 

Third, the collected dataset was cleaned by identifying and removing outliers to enhance model 
performance to reduce noise and minimize prediction error. For example, the NBI dataset included 
bridge projects with a number of spans ranging from 0 to 900. Since only 1,136 out of 286,034 
projects either had more than 30 spans or were reported with zero spans, these cases were identified 
as outliers and excluded. The same procedure was applied to all numerical variables. In addition, the 
dataset was cleaned by removing data items that were incorrectly entered. For instance, the design 
load column should contain categorical values from 0 to 9, where each value represents the live load 
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for which the structure was designed (e.g., 1 = MS 9, 2 = MS 13.5). All bridges with non-numeric 
entries (e.g., A, B, C) for this variable were therefore excluded. In total, this cleaning process resulted 
in the removal of 20,587 outlier bridge projects. 

Fourth, the categorical and numerical variables were transformed to enhance the performance of the 
machine learning models using the min–max normalization technique for all numerical variables, and 
the one hot encoding method for all categorical variables (Daly et al. 2016; Hardy 1993). Fifth, the 
transformed data were divided into training and testing sets that include 80% and 20% of the cleaned 
dataset, respectively.  

c. Model Development  
This phase focused on the development of six ML models that can be used to estimate the condition 
rate and deterioration of conventional and precast deck bridges during the early design phase. These 
models were developed using six ML algorithms that are widely used for this type of prediction 
including Ordinary Least Square (OLS), LASSO Regression (LR), Ridge Regression (RR), Random 
Forest (RF), Gradient Boosting (GB), and Extreme Gradient Boosting (XGBoost). Each model was 
trained using the training set identified in the previous phase. 

d. Model Evaluation  
The performance of the developed ML models was evaluated and validated using the training and 
testing sets, respectively. First, the performance of the developed models was evaluated using the 
training set by analyzing their coefficient of determination (𝑅!) values. This analysis indicates that the 
Gradient Boosting (GB) model achieved the highest performance with (𝑅!)values of 94.04%, as 
shown in Table 2.  

Second, the performance of the developed ML models was validated using the testing set by 
comparing their predicted values to the true values. This validation analysis was conducted using four 
primary metrics: mean absolute percentage error (𝑀𝐴𝑃𝐸), mean absolute error (𝑀𝐴𝐸), median 
absolute error (𝑀𝑒𝑑	𝐴𝐸), and root mean squared error (𝑅𝑀𝑆𝐸). The results show that the XGBoost 
model outperformed the other models in all four metrics of mean absolute percentage error (𝑀𝐴𝑃𝐸 = 
5.93%), mean absolute error (𝑀𝐴𝐸 = 0.36), median absolute error (𝑀ed. 𝐴𝐸 = 0.21); and root mean 
square error (𝑅𝑀𝑆𝐸	 = 	0.55), as shown in Table 2. 

Table 2. Performance of developed machine learning predictive models 

Developed ML 
Algorithms 

Training Dataset  Testing Dataset 

𝑅2	(%)  𝑀𝐴𝑃𝐸	(%) 𝑀𝐴𝐸  𝑀𝑒𝑑	𝐴𝐸  𝑅𝑀𝑆𝐸  
OLS 47.8  7.51 0.47 0.35 0.63 
LR 47.8  7.47 0.46 0.34 0.62 
RR 49.04  7.90 0.48  0.36 0.66 

RFR 93.43  6.29 0.39 0.25 0.57 
GB 94.06  6.36 0.40 0.24 0.57 

XGBoost 90.42  5.93 0.36 0.21 0.55 
 

Task 2 Progress [40% completed]. Last quarter, the research team started the development of a 
practical decision support tool (DST) designed to assist DOT planners during the early design phase 
in analyzing and comparing the durability, safety, sustainability, mobility, and construction cost of 
conventional cast-in-place and precast bridges. The DST will consist of five modules, each designed 
to evaluate the performance of alternative construction methods in five key objectives: (1) 
construction cost, using the ML models developed in Year 1 to predict the cost of alternative bridge 
construction methods (Helaly et al. 2025); (2) durability, using the ML models developed in the first 
task of Year 2 to predict the condition rating of alternative concrete deck bridges; (3) mobility, by 
calculating total vehicle delay hours during construction using the FHWA procedure in the Road User 
Cost Calculator tool (FHWA 2022); (4) safety, by estimating the number of work zone crashes using 
Safety Performance Functions (SPFs) developed by FHWA and AASHTO (Gayah et al. 2024; Kolody 
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et al. 2022); and (5) sustainability, by predicting total project greenhouse gas emissions using the 
FHWA Infrastructure Carbon Estimator methodology (Gallivan et al. 2014). The developed DST is 
expected to provide DOT planners with a comprehensive framework for evaluating trade-offs among 
competing objectives during the early design phase, as shown in Figure 1.   

Task 3 Progress [100% completed].  The research team developed a multi-objective optimization 
model to support State DOTs in generating and evaluating optimal trade-offs among four key 
objectives: maximizing safety, mobility, and sustainability while minimizing the total cost of precast 
bridge construction projects during the preconstruction phase. The development process involved 
three main stages: (1) model formulation, which identified all relevant decision variables, objective 
functions, and constraints; (2) model implementation, which employed the Nondominated Sorting 
Genetic Algorithm II (NSGA-II) supported by four additional modules; and (3) model evaluation, which 
analyzed a case study to demonstrate the model capabilities in optimizing the planning of precast 
bridge construction projects. The outcomes of this task were documented in a manuscript that was 
submitted to the ASCE Journal of Construction Engineering and Management on August 1, 2025. 

4. Percent of research project completed 
75% of total project is completed through the end of this quarter: 

Task 1: 90% completed. 
Task 2: 40% completed. 
Task 3: 100% completed. 

5. Expected progress for next quarter 
In the next quarter, the research team will complete the refinement of the developed machine learning 
(ML) models to further improve their accuracy in predicting the condition rating and deterioration of 
concrete deck bridge projects. Additionally, the team will finalize the development of the decision 
support tool (DST) to ensure it is fully functional and capable of comparing and analyzing alternative 
construction methods during the early design phase. The DST is expected to enable DOT planners to 
conduct a comprehensive evaluation of bridge durability, safety, sustainability, mobility, and 
construction cost for conventional cast-in-place and precast bridges.  

6. Educational outreach and workforce development 
The educational and workforce development (EWD) activities this quarter focused on: (1) continuing 
to enhance the analytical and research skills of a female PhD student, the lead research assistant, in 
collecting and analyzing bridge construction data from various databases and developing machine 
learning and multi-objective optimization models; (2) developing educational modules for two 
construction engineering courses (CEE 421 and CEE 526), which the PI and Co-PI teach to over 120 
students annually; and (3) attending the TRANS-IPIC monthly webinars. 

7. Technology Transfer 
The research team is currently developing (1) novel machine learning models to predict the condition 
rates of concrete deck bridge projects during the early design phase; (2) a practical decision support 
tool (DST) to analyze and compare the durability, safety, sustainability, mobility, and construction cost 
of conventional cast-in-place and PC bridges during the early design phase, and; (3) a multi-objective 
optimization model to optimize the planning of bridge projects to maximize safety, mobility, and 
sustainability, while minimizing the total construction cost.    

Research Contribution: 
8. Papers that include TRANS-IPIC UTC in the acknowledgments section: 
The research team successfully published two papers in leading construction engineering and 
management journals; a conference paper, which was included in the proceedings of the ASCE 
Construction Research Congress 2025; and submitted a third manuscript that is currently under 
review. The publications are as follows: 

1. Helaly, H., K. El-Rayes, E.J. Ignacio, and H. J. Joan. (January 2025). “Comparison of 
Machine Learning Algorithms for Estimating Cost of Conventional and Accelerated Bridge 
Construction Methods During Early Design Phase” Journal of Construction Engineering and 
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Management, ASCE. https://doi.org/https://ascelibrary.org/doi/10.1061/JCEMD4.COENG-
15934. 

2. Helaly, H., K. El-Rayes, and E.J. Ignacio. (February 2025). “Predictive Models to Estimate 
Construction and Life Cycle Cost of Conventional and Prefabricated Bridges During Early 
Design Phase.” Canadian Journal of Civil Engineering. https://doi.org/10.1139/cjce-2023-
0493. 

3. Helaly, H., K. El-Rayes, and E.J. Ignacio. (July 2025). “Machine Learning Models for 
Estimating Construction Costs of Conventional and Accelerated Bridge Construction 
Methods” ASCE Construction Research Congress (CRC) 2025, Modular and Office 
Construction Summit (MOC). 

4. Helaly, H., K. El-Rayes, and E.J. Ignacio. (under review). “Multi-Objective Optimization for the 
Planning of Prefabricated Bridge Construction Projects” Submitted to the Journal of 
Construction Engineering and Management, ASCE in August 2025.   

 

9. Presentations and Posters of TRANS-IPIC funded research: 
None 

 
10. Please list any other events or activities that highlights the work of TRANS-IPIC 

occurring at your university (please include any pictures or figures you may have). 
Similarly, please list any references to TRANS-IPIC in the news or interviews from your 
research.  

None 
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Appendix 1: Research Activities, leadership, and awards (cumulative, since the start of 
the project) 
 
A. Number of presentations at academic and industry conferences and workshops of UTC 

findings 
o No. = Four presentations including (1) oral presentation on April 22, during the first day of the 

TRANS-IPIC Workshop 2025; (2) poster presentation on April 23, during the second day of the 
TRANS-IPIC Workshop 2025; (3) online presentation during the TRANS-IPIC monthly webinar on 
May 21, 2025; (4) presentation at the ASCE Construction Research Congress (CRC) 2025, 
Modular and Offsite Construction (MOC) Summit in July 2025. 

 
B. Number of peer-reviewed publications submitted based on outcomes of UTC funded 

projects 
o No. = Three peer-reviewed publications submitted based on outcomes of UTC funded 

projects. Two peer-reviewed papers have been published in (1) Journal of Construction 
Engineering and Management, ASCE in January 2025, and (2) Canadian Journal of Civil 
Engineering in February 2025. A third manuscript was submitted to the Journal of 
Construction Engineering and Management, ASCE in August 2025 and is currently under 
review.   
 

C. Number of peer-reviewed journal articles published by faculty. 
o No. = Two published peer-reviewed papers that were published in in (1) Journal of Construction 

Engineering and Management, ASCE in January 2025, and (2) Canadian Journal of Civil 
Engineering in February 2025. 
 

D. Number of peer-reviewed conference papers published by faculty. 
o No. = One peer-reviewed conference paper published in the ASCE Construction Research 

Congress (CRC) 2025, Modular and Office Construction Summit (MOC), July 2025 
 
E. Number of TRANS-IPIC sponsored thesis or dissertations at the MS and PhD levels. 

o No. MS thesis = None 
o No. PhD dissertations = One ongoing PhD dissertation by Hadil Helaly 
o No. citations of each of the above = four citations of the published journal papers listed in Section 

C. 
 
F. Number of research tools (lab equipment, models, software, test processes, etc.) developed 

as part of TRANS-IPIC sponsored research 
o Research Tool # 1= six developed machine learning models to estimate the construction cost of 

conventional and precast bridge projects during the early design phase.  
o Research Tool # 2= multi-objective optimization model to optimize the planning of bridge projects 

to maximize safety, mobility, and sustainability, while minimizing construction cost.   
o Research Tool # 3= ongoing machine learning models to predict the condition rates and 

deterioration of bridge projects during the early design phase. 
o Research Tool # 4= ongoing practical Decision Support Tool (DST) to facilitate the use of the 

developed machine learning models by state DOTs and bridge planners during the early design 
phase to analyze and compare the durability, safety, sustainability, mobility, and construction cost 
of conventional cast-in-place and precast bridges. 

 
G. Number of transportation-related professional and service organization committees that 

TRANS-IPIC faculty researchers participate in or lead. 
o Professional societies 

• No. participated in = One at the ASCE Construction Research Congress (CRC) 2025, 
Modular and Office Construction Summit (MOC) in July 2025  

• No. lead = None 
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o Advisory committees (No. participated in & No. led) 
• No. participated in = None 
• No. lead = None 

o Conference Organizing Committees (No. participated in & No. led) 
• No. participated in = None 
• No. lead = None 

o Editorial board of journals (No. participated in & No. led) 
• No. participated in = None 
• No. lead = None 

o TRB committees (No. participated in & No. led) 
• No. participated in = None 
• No. lead = None 

 
H. Number of relevant awards received during the grant year 

o No. awards received = None 
 

I. Number of transportation related classes developed or modified as a result of TRANS-IPIC 
funding. 
o No. Undergraduate = 3  
o No. Graduate = 4 
 

J. Number of internships and full-time positions secured in the industry and government during 
the grant year. 
o No. of internships = None 
o No. of full-time positions = None 
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