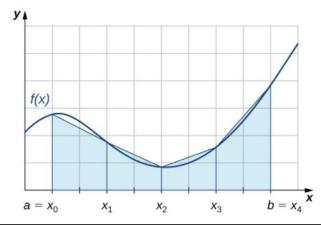


CARE MATH 221 Exam 4 Review

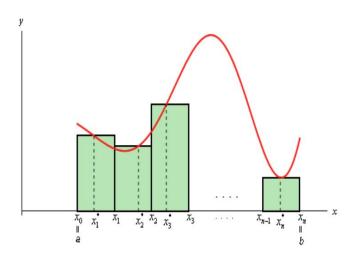

Please sign into the Queue!

Base Rules for estimating area under a curve:

Riemann Sums

$$\int_{a}^{b}\!f\left(x
ight)dx$$
 . $\Delta x=rac{b-a}{n}$

$$T_n=rac{1}{2}\Delta x\left(f\left(x_0
ight)+2f\left(x_1
ight)+2f\left(x_2
ight)+\cdots+2f\left(x_{n-1}
ight)+f\left(x_n
ight)
ight).$$


Four main types of Riemann Sums: Left endpoint, right endpoint, midpoint, and trapezoidal sums

Which sum is the most accurate?

Left and right endpoints can be over or underestimates depending on if the function is increasing or decreasing

Sigma Notation

Use summation notation to write an expression to estimate the area under the graph of $f(x) = \sin(x)$ with 4 rectangles of equal width and right endpoints on the interval (-2,6).

$$A = \lim_{n o \infty} \sum_{i=1}^n f\left(x_i^*
ight) \Delta x$$

$$\Delta x = (b-a)/n$$

$$(x_i^*)$$
 = a +i Δx

$$R_n=\sum_{i=1}^4\,2\sin{(2i-2)}$$

Integral Properties

Properties of the integral

Theorem (Additive Properties of the Integral)

Let f and g be integrable functions on [a, b] and c a constant.

Then

$$1. \int_a^b c \, dx = c(b-a)$$

2.
$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$
.

3.
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
.

4.
$$\int_a^b [f(x) - g(x)] dx = \int_a^b f(x) dx - \int_a^b g(x) dx$$
.

Don't forget to factor the constant back into your final answer!

Integrals: Definite vs. "General"

This gives you a number

Definite: $\int_{a}^{b} f(x)dx = F(b) - F(a)$

Note: Definite integrals require bounds!

General:
$$\int f(x)dx = F(x) + C$$

This represents a family of functions

FTC, Average Value of a Function

$$rac{d}{dx} \int_a^x f(t) \, dt = f(x)$$

$$\int^b f(x) dx = F(b) {-} F(a)$$

$$\frac{1}{b-a}\int_{a}^{b}f(x)dx$$

$$\int_{a}^{b} f(x)dx = f(c)(b - a)$$

Calcworkshop.com

Common Antiderivatives

$$\int 0dx = C \qquad \qquad \int 1dx = x + C \qquad \qquad \int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int e^x dx = e^x + C \qquad \qquad \int \frac{1}{x} dx = \ln(x) + C \qquad \qquad \int a^x dx = \frac{a^x}{\ln(a)} + C$$

$$\int \sin(x) dx = -\cos(x) + C \qquad \qquad \int \cos(x) dx = \sin(x) + C \qquad \qquad \int \sec^2(x) dx = \tan(x) + C$$

$$\int \sec(x) \tan(x) dx = \sec(x) + C \qquad \int -\csc(x) \cot(x) dx = \csc(x) + C \qquad \int -\csc^2(x) dx = \cot(x) + C$$

Net Change Theorem

The definite integral of the rate of change of a quantity F'(x) gives the total, or net change, in that quantity on the interval [a, b].

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

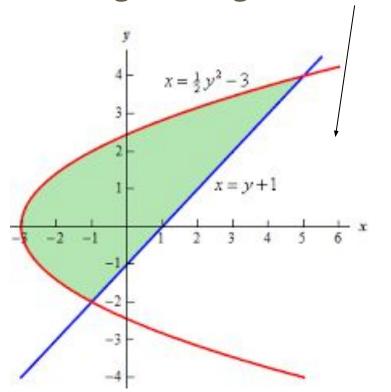
Keywords to look for:

- "Net displacement"
- "Total distance traveled"

Substitution Rule (U-sub)

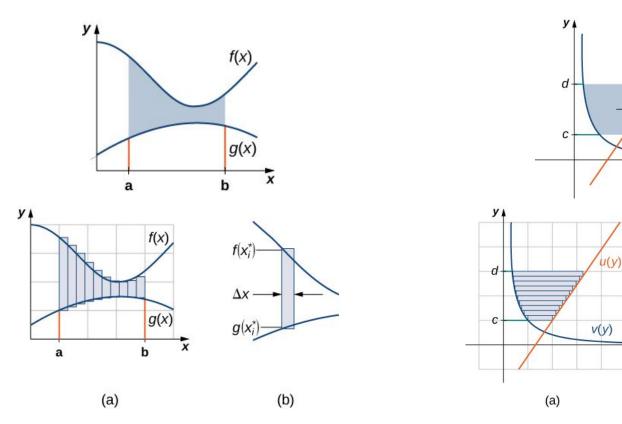
$$\int f(g(x))g'(x)dx = \int f(u)du = F(u) + C$$
where $u = g(x)$ $du = g'(x)$

Areas Between Curves


$$A = \int_{a}^{b} (f(x) - g(x))dx$$

$$a$$

$$A = \int_{a}^{b} (top - bottom)dx$$


Take the integral of the least complex area

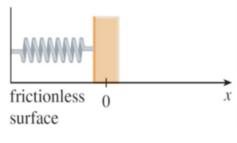
For dy integral, take the integral of right - left

Area Between Curves: Vertical and Horizontal Rectangles

(b)

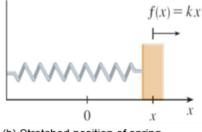
Work

$$W=\int_{a}^{b}F\left(x
ight) \,dx$$


Remember: Work is only done if the object moves.

Hydrostatic Force:

$$F = mg = \rho Vg$$


Hooke's Law:

$$F(x) = kx$$

(a) Natural position of spring

(b) Stretched position of spring

CARE MATH 221 Exam 4 Review

Please sign into the Queue!