

MATH 241

Midterm 3 Review

Keep in mind that this presentation was created by CARE tutors, and while it is thorough, it is not comprehensive.

QR Code to the Queue

The queue contains the worksheet and the solution to this review session

Double Integrals

$$V = \iint_R f(x,y) \, dA.$$

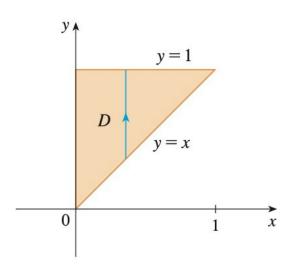
Fubini's Theorem

If f(x,y) is continuous on the rectangle

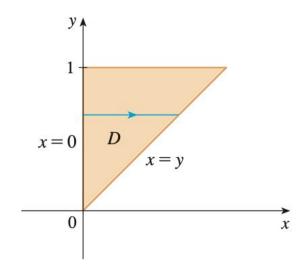
$$R = \{(x,y) | a \le x \le b, c \le y \le d\}$$

$$\iint \underbrace{f(x,y) dA}_{a} = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$

Double Integral Over a General Region

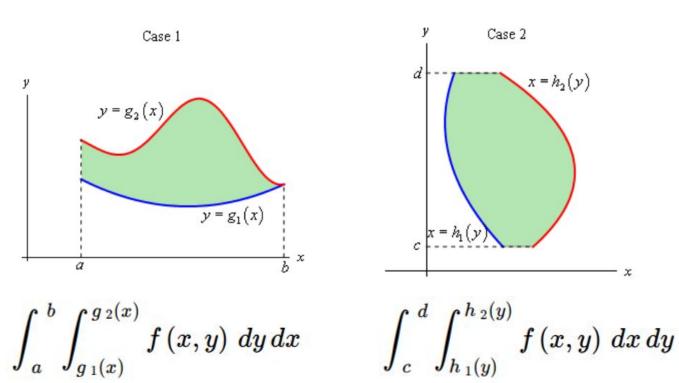


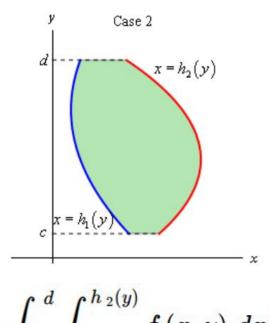
• Then integrate dx



- Integrate dx from x=0 to x=y
- Then integrate dy

Double Integral Over General Regions





$$\int_{c}^{d}\int_{h_{1}\left(y
ight) }^{h_{2}\left(y
ight) }f\left(x,y
ight) \,dx\,dy$$

Center of Mass

• The x, y coordinates of the center of mass for an object that has a density function $\rho(x,y)$

$$\bar{\mathbf{x}} = \frac{1}{\mathbf{m}} \iint x \cdot \rho(x, y) dA$$
 $\bar{\mathbf{y}} = \frac{1}{\mathbf{m}} \iint y \cdot \rho(x, y) dA$

, where mass is calculated as
$$\mathbf{m} = \iint \rho(x,y)dA$$

Triple Integral

• Let *E* be the solid contained under the plane 2x + 3y + z = 6 in the first octant. Compute the following:

$$\iiint_{E} 2x \, dV$$

Triple Integral-Cont'd

• Let *E* be the solid contained under the plane 2x + 3y + z = 6 in the first octant. Compute the following:

$$\iiint_E 2x \, dV = \int_0^3 \int_0^{2-2x/3} \int_0^{6-2x-3y} 2x \, dz dy dx = \int_0^3 \int_0^{2-2x/3} 2x (6-2x-3y) dy dx$$

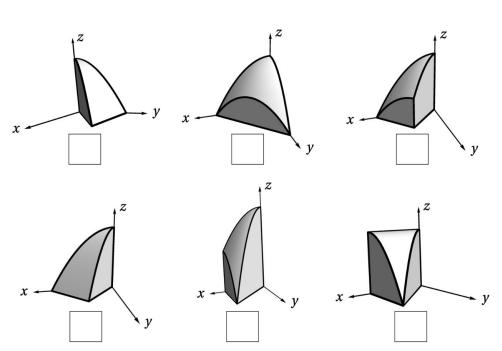
$$= \int_0^3 12x \left(2 - \frac{2x}{3}\right) - 4x^2 \left(2 - \frac{2x}{3}\right) - 3x \left(2 - \frac{2x}{3}\right)^2 dx = 9$$

Example Question #1

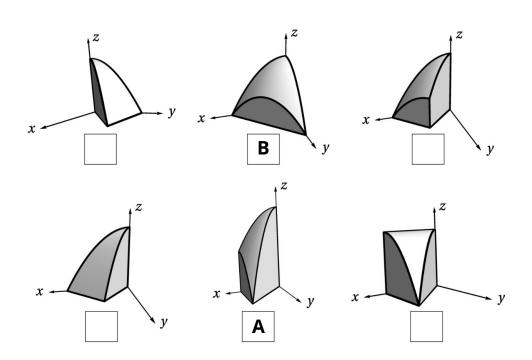
Match the integrals to their corresponding solid regions:

(A)
$$\int_0^1 \int_y^1 \int_0^{2-x^2-y^2} f(x, y, z) dz dx dy$$

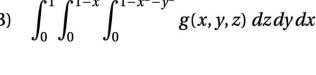
(B)
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}-y^{2}} g(x, y, z) dz dy dx$$



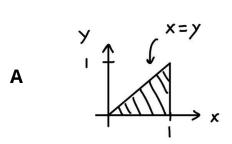
Example Solution #1

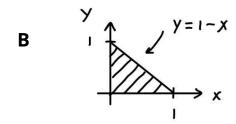


(A)
$$\int_{0}^{1} \int_{y}^{1} \int_{0}^{2-x^{2}-y^{2}} f(x, y, z) \, dz \, dx \, dy$$
(B)
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x} \int_{0}^{1-x^{2}-y^{2}} g(x, y, z) \, dz \, dy \, dx$$



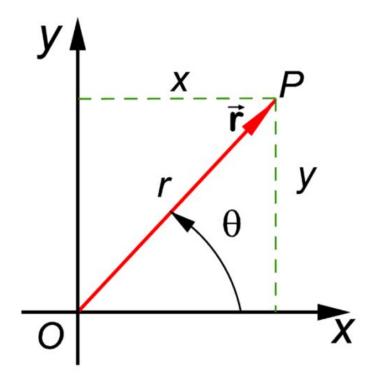
base





Polar Coordinates

$$x = r\cos\theta$$
$$y = r\sin\theta$$
$$r^{2} = x^{2} + y^{2}$$
$$\theta = \arctan\left(\frac{y}{x}\right)$$
$$dA = rdrd\theta$$



https://magoosh.com/hs/ap-calculus/2017/ap-calculus-bc-review-polar-functions/

Cylindrical Coordinates

 Cylindrical coordinate is just an extension of polar coordinate to three dimension

$$x = r\cos\theta$$

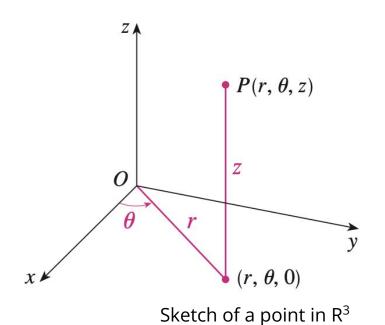
$$y = r\sin\theta$$

$$z = z$$

$$r^{2} = x^{2} + y^{2}$$

$$\theta = \arctan\left(\frac{y}{x}\right)$$

$$dV = rdzdrd\theta$$



Spherical Coordinates

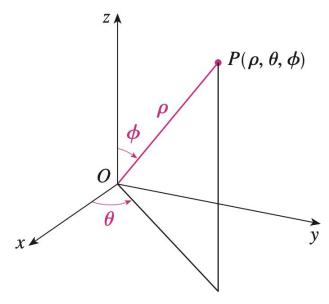
$$x = \rho \sin\varphi \cos\theta$$

$$y = \rho \sin\varphi \sin\theta$$

$$z = \rho \cos\varphi$$

$$\rho^2 = x^2 + y^2 + z^2$$

$$dV = \rho^2 \sin\varphi \, d\rho d\theta d\varphi$$



Sketch of a point in R³

Surface Area

 The area of the surface A(S) with equation z=f(x,y) can be calculated as:

$$A(S) = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA$$

Change of Variables Using Jacobian Matrix

If there is a transformation such that x=g(u,v) and y=h(u,v), then:

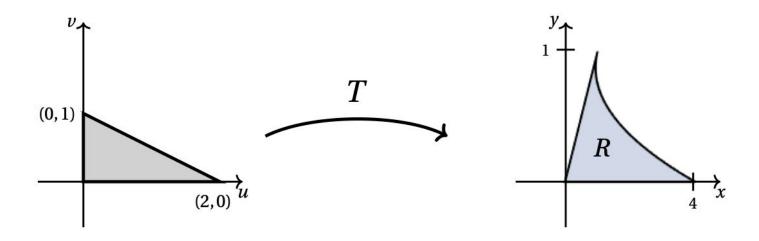
$$\iint\limits_{R} f(x,y)dA = \iint\limits_{S} f[g(u,v),h(u,v)] \cdot \left| \frac{\partial(x,y)}{\partial(u,v)} \right| d\overline{A}$$

, where the Jacobian Matrix is calculated as

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

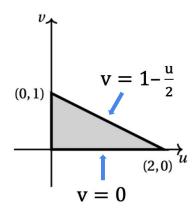
Example Question #2

• Set up the integral to calculate the area of R with the transformation $T(u,v) = (u^2+v, v)$.



Example Solution #2

• Set up the integral to calculate the area of R with the transformation $T(u,v) = (u^2+v, v)$.



$$0 \le v \le 1 - \frac{u}{2} \qquad 0 \le u \le 2$$

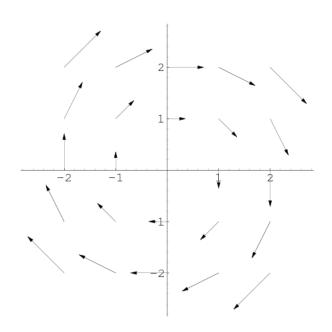
Jacobian:
$$\det \begin{bmatrix} 2u & 1 \\ 0 & 1 \end{bmatrix} = 2u$$

Integral:
$$\int_0^2 \int_0^{1-u/2} 2u \, dv du$$

Vector Field

- A function that assigns a vector \mathbf{F} to each point in 2D or 3D space.
- Takes in a point and "spits out" a vector

$$\vec{\mathbf{F}}(x,y) = P(x,y)\,\hat{\mathbf{i}} + Q(x,y)\,\hat{\mathbf{j}}.$$



Conservative Vector Field

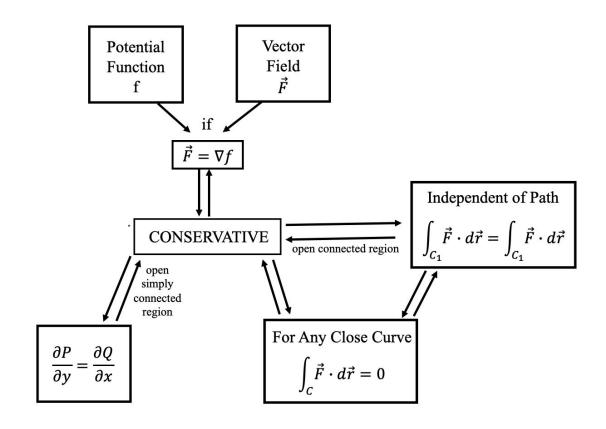
Line integrals of a conservative vector field are independent of path

$$\int_C F \cdot dr$$
 is independent of path D if and only if
$$\int_C F \cdot dr = 0 \text{ for every closed path C in D}$$

Let F = Pi + Qj be a vector field on an open simply-connected region D.
 Suppose that P and Q have continuous partial derivatives and

$$\frac{\partial P}{\partial v} = \frac{\partial Q}{\partial r}$$
 throughout D , then F is conservative.

Conservative Vector Field



Green's Theorem

Let C be a counterclockwise, simple closed curve in the plane and let D
be the region bounded by C. If P and Q have continuous partial
derivatives on an open region that contains D, then

$$\int_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

• Green's theorem to calculate the area of a region D bounded by C

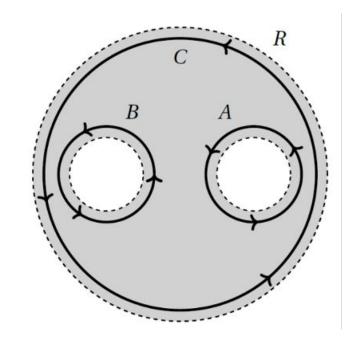
$$A = \oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C x \, dy - y \, dx$$

Example Question #3

 Consider the region R shown at the right which contains simple closed curves A, B, and C. Suppose F = <P, Q> is a vector field with continuous partial derivatives on R with the following characteristics:

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \qquad \int_{A} F \cdot dr = 2 \qquad \int_{B} F \cdot dr = -1$$

- (a) Find $\int_C F \cdot dr$
- (b) Is this vector field conservative?



Example Solution #3

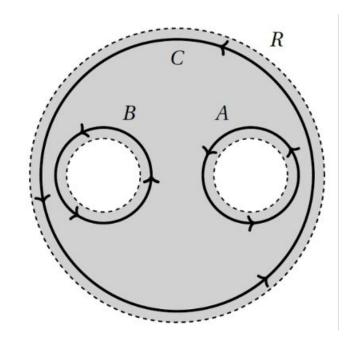
(a) Let D be the region enclosed by C. Using Green's theorem:

$$\int_{C} F \cdot dr - \int_{A} F \cdot dr - \int_{B} F \cdot dr = 0$$

$$\int_{C} F \cdot dr - 2 - (-1) = 0$$

$$\int_{C} F \cdot dr = 1$$

(b) This vector field is not conservative because it is not a simply-connected region, and the line integral for the closed curve C is not 0.



Curl

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F}$$

- Cross product → Curl is a vector field
- Describes how vectors rotate around a certain point
- Use right-hand rule to determine the sign of curl
- Curl of a gradient field = 0
- If F is conservative, curl = 0
- Green's theorem in vector form:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D (\text{curl } \mathbf{F}) \cdot \mathbf{k} \, dA$$

Curl Test for Conservative Vector Field

 If F is a vector field defined on all of R³ whose component functions have continuous partial derivatives and curl F = 0, then F is a conservative vector field

Divergence

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F}$$

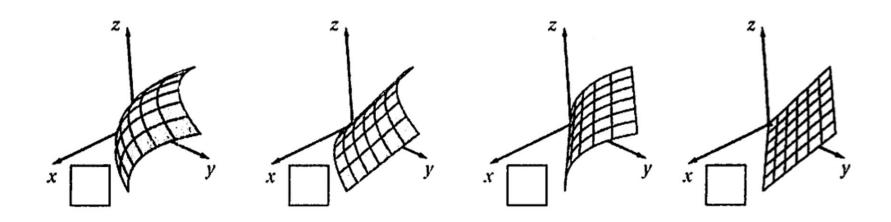
- Dot product → Divergence is a scalar field
- Describes how vectors diverge from a single point (or converge to a point)
- Diverging vectors: positive, Converging vectors: negative
- Green's theorem in vector form:

$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \operatorname{div} \mathbf{F}(x, y) \, dA$$

Example Problem #4

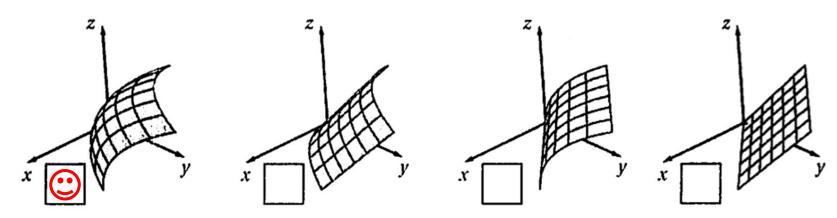
Match the surfaces below with the following parametrization:

$$r(u, v) = \langle u, u^2 + v^2, v \rangle$$
 defined on $D = \{(u, v) | 0 \le u \le 1, 0 \le v \le 1\}$



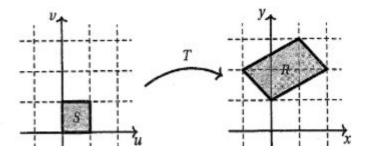
Example Solution #4

r(u,v)= < u,u^2+v^2,v > defined on $D=\{(u,v)|0\leq u\leq 1,0\leq v\leq 1\}$ When x is constant \rightarrow curve on the yz-plane should be a parabola When y is constant \rightarrow curve on the xz-plane should be a circle When z is constant \rightarrow curve on the xy-plant should be a parabola



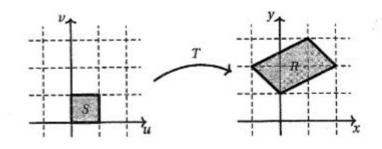
Example Problem #5

3. Find a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ taking the unit square S to the parallelogram R shown at right, where both are shown against a grid of unit squares. (4 points)



Example Solution #5

3. Find a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ taking the unit square S to the parallelogram R shown at right, where both are shown against a grid of unit squares. (4 points)



Surface Area of a Parametric Surface

If a parametric surface S is given by the equation

$$\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k} \qquad (u, v) \in D$$

, the surface area of S is

$$A(S) = \iint\limits_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

, where r_{ij} and r_{ij} are partial derivatives with respect to u and v.

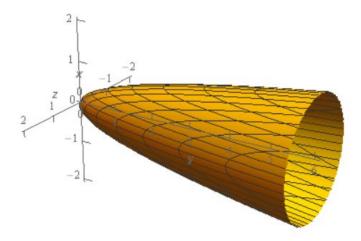
Surface Integral

The surface integral of a function f over a parametric surface is:

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

Example Problem #6

Evaluate $\iint\limits_S 40y\,dS$ where S is the portion of $y=3x^2+3z^2$ that lies behind y=6 .



Example Solution #6

$$\iint\limits_{S} f\left(x,y,z
ight) dS = \iint\limits_{D} f\left(x,g\left(x,z
ight),z
ight) \sqrt{\left(rac{\partial g}{\partial x}
ight)^{2} + 1 + \left(rac{\partial g}{\partial z}
ight)^{2}} dA$$

In this case D will be the circle/disk we get by setting the two equations equal or,

$$6 = 3x^2 + 3z^2 \quad \Rightarrow \quad x^2 + z^2 = 2$$

So, D will be the disk $x^2 + z^2 \le 2$.

$$\iint\limits_{S} 40y \, dS = \iint\limits_{D} 40 \left(3x^2 + 3z^2\right) \sqrt{\left(6x\right)^2 + 1 + \left(6z\right)^2} \, dA$$

Example Solution #6

- Change to polar coordinates for easier computation

$$x^2+z^2\leq 2$$
 $0\leq heta\leq 2\pi$ $0\leq r\leq \sqrt{2}$ $x^2+z^2=r^2$

$$\iint 120 \left(x^2+z^2
ight) \sqrt{36 \left(x^2+z^2
ight)+1} \, dA \quad = \int_0^{2\pi} \int_0^{\sqrt{2}} 120 r^3 \sqrt{36 r^2+1} \, dr \, d heta$$

Flux

The flux of a vector field F over a parametric surface is:

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \vec{n} \, dS = \iint_{D} \vec{F} \cdot (\vec{r_{u}} \times \vec{r_{v}}) dA$$