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MATH 241

— Midterm 3 Review S

Keep in mind that this presentation was created by CARE tutors, and while it is thorough, it is not comprehensive.



The queue contains the worksheet and the solution to this review session



Double Integrals

V= -/-/1; f(z,y) dA.




Fubini’s Theorem

e |f f(x,y)is continuous on the rectangle

R={(xy)a<x<bc<y<d}

ff f(x,y)dA = Lb fcdf(x,y)dydx =

d rb
f f f(x, y)dxdy
C a



Double Integral Over a General Region

YA
y=l 1 /
D >
y=x x=0 D
xX=y
0 T x 0 x
e Integrate dy from y=x to y=1 e Integrate dx from x=0 to x=y
e Then integrate dx e Then integrate dy



Double Integral Over General Regions

Case 1 ¥ Case 2

b pgaz) h 2 (y)
/ / f(z,y) dydzx / / f(z,y) dedy
a JYgi(z) h1(y)




Center of Mass

e The X, y coordinates of the center of mass for an object that has a density
function p(x,y)

fc=%ﬂx-p(x.y)dA 7=$ﬂy-p(x,y)dA

, where mass is calculated as m = ﬂp(x,y)dA



Triple Integral

e LetE be the solid contained under the plane 2x + 3y + z=6 in the
first octant. Compute the following:

[[[2xev



Triple Integral-Cont'd

e LetE be the solid contained under the plane 2x + 3y + z=6 in the
first octant. Compute the following:

3 2-2x/3 6-2x-3y 3 2-2x/3
f f ] 2xdV = f f f 2x dzdydx = f f 2x(6-2x-3y)dydx
H 0 ~0 0 o Jo

3 2X 2X 2%\ 2
=f 12x(2——)—4x2(2——)—3x(2——) dx =9
. 3 3 3



Example Question #1

e Match the integrals to their corresponding solid regions:
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Example Solution #1

e
4

4 4
(.

1 pl p2-x2-)>?
(A) f f f f(x,y,2) dzdxdy
0 Jy JO

1 pl-x pl-x?-y?
(B) f f f g(x,y,z) dzdydx
0o Jo 0
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Polar Coordinates

X = rcosf
y = rsinf
r2 = x? + y?

6 = arctan (g)

dA = rdrdé@




Cylindrical Coordinates

e Cylindrical coordinate is just an extension of polar coordinate to
three dimension

ZA

X = rcosf@
y = rsinf ? P(r, 0,z)
7 =7
0 Z

r2 = x? + y?
y 7, \
6 = arctan (—) Y
X X (r, 0, 0)

dV = rdzdrdé Sketch of a point in R




Spherical Coordinates

. ZA
X = psingcosf
P(p, 0, ¢)

y = psingsinf
Z = PCOSQY

(0]
P =3 by 47 AR,
X Y

dV = p?sing dpdfde

Sketch of a point in R3




Surface Area

e The area of the surface A(S) with equation z=f(x,y) can be calculated

RS NE G R o




Change of Variables Using Jacobian Matrix

e Ifthereis a transformation such that x=g(u,v) and y=h(u,v), then:

f f f(x, y)dA = l f flg(u, v), h(u, v)] - |gg fg‘dx

R

, Where the Jacobian Matrix is calculated as

ox  ox
ox,y) u __dx dy  ox dy
du,v) |9y dy| ou dv v ou
o o




Example Question #2

e Set up the integral to calculate the area of R with the
transformation T(u,v) = (u?+v, v).

Vs Y
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Example Solution #2

e Set up the integral to calculate the area of R with the
transformation T(u,v) = (u?+v, v).

U

u
OSVS].—E O0<ux<?

0,1) 2
’ /
\ Jacobian: det [20u ﬂ = 2u

2 (1-u/2
Integral: f f 2u dvdu
0o Jo




Vector Field

- A function that assigns a vector F to each pointin 2D or 3D
- Takes in a point and “spits out” a vector

s

-

space.

F(x,y) = P(x,y)i + O(x,)]. "




Conservative Vector Field

e Lineintegrals of a conservative vector field are independent of path

[ aF dr is independent of path D if and only if
fCF ~dr = 0 for every closed path Cin D

e LetF=Pi+ Qjbe avector field on an open simply-connected region D.
Suppose that P and Q have continuous partial derivatives and

P 30

= throughout D , then F is conservative.
dy ox




Conservative Vector Field

Potential Vector
Function Field
£ F

N
= Vf
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Independent of Path
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For Any Close Curve

-

fF-dF=0
C




Green’s Theorem

e Let Cbe acounterclockwise, simple closed curve in the plane and let D
be the region bounded by C. If P and Q have continuous partial
derivatives on an open region that contains D, then

J‘de+Qdy ﬁ( )dA

e Green’s theorem to calculate the area of a region D bounded by C

A =§dey= —§Cydx=%ffcxdy — ydx



Example Question #3

e Consider the region R shown at the
right which contains simple closed
curves A, B, and C. Suppose F = <P, Q>
is a vector field with continuous
partial derivatives on R with the
following characteristics:

9Q opP
L fF-dr=2 fF-dr=—1
0x 0Oy A B

(a) Find fCF ~dr

(b) Is this vector field conservative?




Example Solution #3

(a) Let D be the region enclosed by C.
Using Green’s theorem:

fF-dr—fF-dr—fF-dr=O
C A B

jF-dr—Z—(—1)=0 fp-dr=1
6 c

(b) This vector field is not conservative — ‘
because it is not a simply-connected

region, and the line integral for the

closed curve Cis not 0.




Curl
curl F =V X F

e Cross product — Curl is a vector field

e Describes how vectors rotate around a certain point
e Use right-hand rule to determine the sign of curl

e Curlof agradient field=0

e |If Fisconservative, curl=0

e Green's theorem in vector form:

§CF-dr=”(cur1F)-de
D



Curl Test for Conservative Vector Field

e If Fisavector field defined on all of R® whose component functions have
continuous partial derivatives and curl F =0, then F is a conservative

vector field



Divergence

divF=V - F
e Dot product — Divergence is a scalar field
e Describes how vectors diverge from a single point (or converge to a
point)
e Diverging vectors: positive, Converging vectors: negative

e Green's theorem in vector form:

§CF ‘nds = ” divF(x, y) dA
D




Example Problem #4

e Match the surfaces below with the following parametrization:

r(u,v) =< u,u®+v% v >definedonD = {(u,v)[0<u<10<v<1}




Example Solution #4

r(u,v) =< u,u®+v% v >definedonD = {(u,v)[0<u<10<v<1}
When x is constant — curve on the yz-plane should be a parabola
Wheny is constant — curve on the xz-plane should be a circle

When z is constant — curve on the xy-plant should be a parabola

Zz < ¥4

-
-

=
=

=
<




Example Problem #5
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Example Solution #5

Y
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Surface Area of a Parametric Surface

e |f a parametric surface S is given by the equation
r(u, v) = x(u, v)i + y(u,v)j + z(u, v) k (u,v) € D

, the surface area of S is
A(S) = ” |r, X r,|dA
D

, Where r_and r_are partial derivatives with respect to u and v.




Surface Integral

e The surface integral of a function f over a parametric surface is:

Hf(x’ y,2) dS = ”f(l‘(u, v)) | r. X r,|dA
D

S



Example Problem #6

Evaluate / / 40y dS where S is the portion of y = 322 + 322 that lies behind y = 6 .
S




Example Solution #6

//f(x,y,z) dS=//f(x,g(x,z),z)\/(%)2+1+(%)2dA
D

S

In this case D will be the circle/disk we get by setting the two equations equal or,
6=3a:2+3z2 — w2+z2=2

So, D will be the disk z2 + 22 < 2.

= T z (E2 22
/]40de £f40(3 ? +322%) \/(6 )"+ 1+ (62)°dA

S




Example Solution #6

- Change to polar coordinates for easier computation

0<0< 27

2 2
x4+ 22 <2 = pp—-

r? + 22 =r?

2 V2
120 (2% + 2%) /36 (22 + 2%) + 1dA =/ f 12072 /3672 + 1drdé
// (@ +2%) |36 (o +2°) + 1d4 ) — [ [ 12036 ¥ Tar

D




Flux

e The flux of a vector field F over a parametric surface is:

ﬂff-d§=ﬂff’-ﬁ’ds=ﬂff-(rgxﬁ;)d,4
S S D




