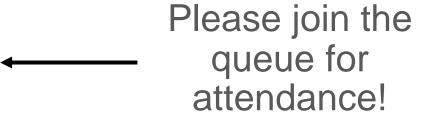
Exam 3 Review Session _ __ Math 231E



Outline

- Please join the queue.
- 2. Mini review of some topics covered
- 3. Practice! → CARE Worksheet, Practice Exams
 - a. Please raise hands for questions rather than put them in the queue

Need extra help? → 4th Floor Grainger Library									
Subject 🔷	Sunday 🔷	Monday 🔷	Tuesday 🔷	Wednesday 🔷	Thursday 🔷	Friday 🔷	Saturday 🔷		
Math 231 (E)	4pm-10pm	1pm-5pm 8pm-10pm		1pm-5pm 8pm-10pm	6pm-8pm		2pm-4pm		

Improper Integrals

- Improper Integrals: FTC does not hold since functions are **not continuous** along the interval of integration.
- Type I: Infinite Interval

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$$
$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$$

• Type II: Discontinuous Interval

$$\int_{a_b}^{b} f(x)dx = \lim_{t \to b^-} \int_{a_b}^{t} f(x)dx$$
$$\int_{a}^{b} f(x)dx = \lim_{t \to a^+} \int_{t}^{b} f(x)dx$$
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Improper Integrals

- Comparison Principal: If given two functions g(x) and h(x) and we want to take the integral to infinity, and we know that g(x) is always smaller than h(x), then:
 - If g(x) diverges, then h(x) must as well.
 - If h(x) converges, then g(x) must as well.

Applications

Volume

Disk Method

- Using the formula for area of a circle
 - Putting it in the integral adds each circle in the bounds

$$V = \int_{a}^{b} \pi r^{2} dx$$
Where the $r = f(x)$



Applications

Volume

Washer Method

 Must subtract big function minus small function to find the in between region

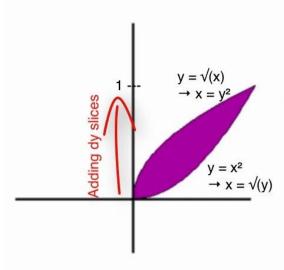
$$(Top - Bottom)$$

 $(Right - Left)$

$$V = \int_{a}^{b} \pi (R^2 - r^2) dx$$

Where
$$R = f(x)$$

 $r = g(x)$
 $f(x) > g(x)$



Region to Revolve about y-axis



Applications

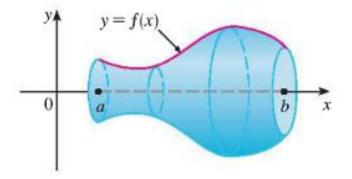
• Arclength ("height"):

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \text{ if } y = f(x)$$

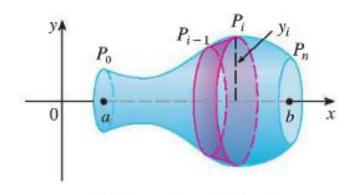
$$ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy \text{ if } x = h(y)$$

Surface of Revolution:

$$SA = \int 2\pi y ds$$
 rotation about x-axis $SA = \int 2\pi x ds$ rotation about y-axis



(a) Surface of revolution



(b) Approximating band

Applications Example

How to set up the surface area equation when rotating $y = \sqrt{9 - x^2}$ about the y-axis?

- Because about y-axis, using $SA = \int 2\pi x ds$
 - We need x and ds

<u>To get x</u>, rearrange the given equation

$$y = \sqrt{9 - x^2}$$

$$y^2 = 9 - x^2$$

$$x^2 = 9 - y^2$$

$$x = \sqrt{9 - y^2}$$

Substituting...

$$SA = \int 2\pi \sqrt{9 - y^2} ds$$

To get ds, use the equation for ds that gives us a dy (since x is in terms of y)

$$ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy \text{ if } x = h(y)$$

Derivative of x...

$$\frac{dx}{dy} = \frac{-y}{\sqrt{9 - y^2}}$$

Plug back in...

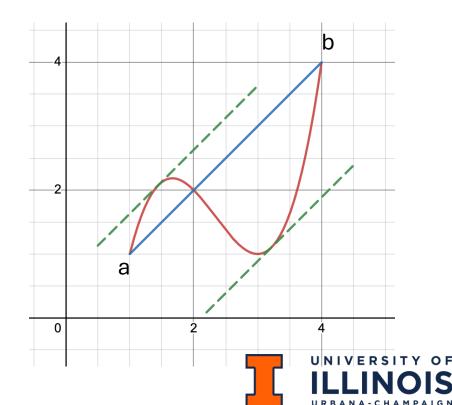
Work

Work: Force over a distance

$$W = \int F(x) dx$$

- If the force is not constant.
- Average Value of a function over an interval

$$y_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$



Series / Sequences

- Sequence: Just the list of the numbers
 - Limits of sequences
 - Treat it like a function
 - Convergence
 - Treat it like a function
 - Derivative can tell you if it is always increasing or decreasing
- Series: The sum of a sequence
 - If a series converges, then the sequence must converge as well.
 - **However:** If sequence converges, then the series may or may not converge.
 - Σa_n converges if the limit of the series converges.

Integral Test

- Let an = f(n):
 - $\int f(x)dx$ (from k to infinity) converges if the series converges ($\sum a_k$).

Must be:

- Continuous
- Positive
- Decreasing

1. If
$$\int_{k}^{\infty} f\left(x\right) \, dx$$
 is convergent so is $\sum_{n=k}^{\infty} a_{n}$.

2. If
$$\int_{k}^{\infty} f(x) \ dx$$
 is divergent so is $\sum_{n=k}^{\infty} a_{n}$.

- P-test:
 - The series $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if p \leq 1.

Comparison/Limit Tests

Direct Comparison Test:

- Let $0 \le an \le bn$.
 - If the series of bn converges, then the series of an does as well.
 - If the series of an diverges, then the series of bn does as well.

Limit Comparison Test:

- Let $0 \le an$, bn
 - If the limit of an/bn = C, and C is a nonzero, finite number (ie. not zero or infinity)
 - Then one of two things:
 - Both an and bn converge.
 - Both an and bn diverge.

Alternating Series Test

- What is an Alternating Series?
 - The series is changing signs with each subsequent term
 - $\Sigma a_n(-1)^{n+1}$
- Alternating Series Test
 - With series Σa_n , $a_n = (-1)^n b_n$ OR $a_n = (-1)^{n+1} b_n$
 - If $\lim_{n\to\infty} b_n = 0$

AND

- b_n is a decreasing sequence
- The series Σa_n is convergent

Root Test

Theorem 2.1 (Root Test). Let a_n be a sequence and $\sum_{n=1}^{\infty} a_n$ be the associated series. Let us define

$$b_n = \sqrt[n]{|a_n|} = |a_n|^{1/n},$$

and assume that $\lim_{n\to\infty} b_n = L$. Then

- 1. if L < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely;
- 2. if L > 1, then $\sum_{n=1}^{\infty} a_n$ diverges;
- 3. if L = 1, then no information is obtained.

Ratio Test

Theorem 3.1. Let a_n be a sequence and $\sum_{n=1}^{\infty} a_n$ be the associated series. Let us assume that

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L.$$

Then

- 1. if L < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely;
- 2. if L > 1, then $\sum_{n=1}^{\infty} a_n$ diverges;
- 3. if L = 1, then no information is obtained.

Absolute Convergence

- Absolute Convergence:
 - If the absolute value of a series, then the series is absolutely convergent.
- Conditional Convergence:
 - If a series if convergent, but the absolute value of the series diverges, then the series is conditionally convergent.
- Negative signs can only help convergence!

Strategies

- 1. Check divergence with limit
- 2.Look for easy P-Test/Geometric
- 3.Inspection

TEST	SERIES	CONVERGES IF	DIVERGES IF	COMMENTS
nth Term Test for Divergence	$\sum_{n=1}^{\infty} a_n$	n/a	$\lim_{n\to\infty}\neq 0$	should be first test used. Inconclusive if limit = 0.
Geometric Series Test	$\sum_{n=1}^{\infty} a_n r^{n-1}$	r < 1	$ r \ge 1$	use if there is a "common ratio" $S_n = \frac{a}{1-r}$
P-Series Test	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	<i>p</i> ≤ 1	harmonic series when p=1. Useful for comparison tests.
Integral Test	$\sum_{n=1}^{\infty} a_n$ $a_n = f(x)$	$\int_{1}^{\infty} f(x) dx$ converges	$\int_{1}^{\infty} f(x) dx$ diverges	f(x) must be continuous, positive, and decreasing
Direct Comparison Test	$\sum_{n=1}^{\infty} a_n$	$0 \le a_n \le b_n$, $\sum_{n=1}^{\infty} b_n$ converges	$0 \le b_n \le a_n$, $\sum_{n=1}^{\infty} b_n$ diverges	to show convergence, find a larger series. to show divergence, find a smaller series.
Limit Comparison Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n o \infty} \frac{a_n}{b_n} > 0,$ $\sum_{n=1}^{\infty} b_n$ converges	$\lim_{n o\infty}rac{a_n}{b_n}>0,$ $\sum_{n=1}^{\infty}b_n$ diverges	apply l'hospital's rule if necessary; inconclusive if limit equals 0 or ∞
Alternating Series Test	$\sum_{n=1}^{\infty} (-1)^{n+1} a$	$a_{n+1} \le a_n,$ $\lim_{n \to \infty} a_n = 0$	$\lim_{n\to\infty}a_n\neq 0$	must prove that the limit equals 0 and that terms are decreasing
Ratio Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right <1$	$\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right > 1$	test fails if: $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1$
Root Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$	$\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$	test fails if: $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1$

Exam 3 Review Session _ __ Math 231E

