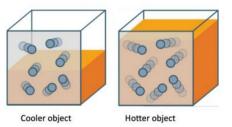

C.A.R.E. PHYS 213 Quiz 1 Review Session

CARE/CARE PHYS 213 Exam Review Session


This queue is closed. Check back later!

Units for the Exam

- Internal Energy
- Temperature
- Heat Capacity
- Entropy

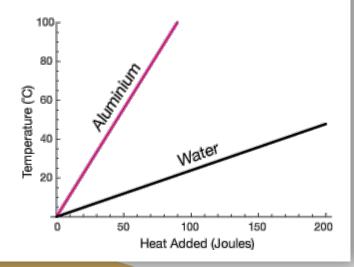
Internal Energy

Total energy is <u>ALWAYS</u> conserved

Positive work on a system increases the system's internal energy

Higher temperature → More Internal Energy

• First law of thermodynamics:

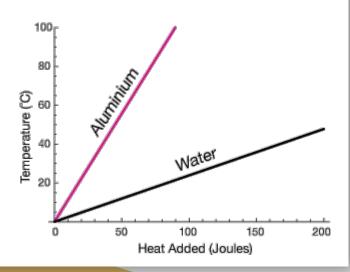

$$\Delta U = W_{on} + Q$$

Change in Work done Heat added internal on the to the energy system system

Temperature & Heat Capacity

- Heat Capacity (C) how much energy it takes to increase the temperature of a substance by 1 K/°C
 - Units of J/K
- Larger C → More energy is required to increase the temperature of the object

$$C = dQ/dT$$



Temperature & Heat Capacity

- Heat Capacity (C) how much energy it takes to increase the temperature of a substance by 1 K/°C
 - Units of J/K
- Larger C → More energy is required to increase the temperature of the object

 Water has a larger heat capacity than Aluminum

$$C = dQ/dT$$

Types of Heat Capacity

- Molar Heat Capacity [J/mol K]: The amount of heat required to raise the temperature of 1 mole of a substance by 1 K/°C
 - \circ $c_M = C/n$, where n is the number of moles
- Specific Heat Capacity [J/kg K]: The amount of heat required to raise the temperature of 1 kg of a substance by 1 K/°C
 - \circ c = C/m, where m is the mass [kg]
- Heat Capacity at a Constant Volume and Constant Pressure:
 - \circ $C_v = dU/dT$
 - \circ $C_p = dU/dT + p dV/dT$

Equipartition

Monatomic:

DOF = 3

Diatomic:

DOF = 5

Vibrational:

DOF = 7

Solid:

DOF = 6

Molecule	Degrees of freedom	U	C _v
	Noor = 3 x, y, z momentum	$U = \frac{3}{2} NkT$	$C_{V} = \frac{3}{2}Nk$
4	x, y, z momentum 2 rotation axes	$U = \frac{(3+2)}{2} NkT$	$C_{V} = \frac{5}{2} Nk$
CAMPO TO PROPERTY OF THE PROPE	x, y, z momentum 2 rotation axes vibration mode (momentum+potential) Noor = 7	$U = \frac{(3+2+2)}{2} NkT$	$C_{\nu} = \frac{7}{2} Nk$
	x, y, z momentum x, y, z spring modes	$U = \frac{(3+3)}{2} NkT$	$C_{\nu} = 3Nk$

Equipartition & Heat Capacity

 Only need to memorize DOFs for monatomic gas, diatomic gas, and solids (3, 5, and 6, respectively)

• For substances under the **equipartition assumption**:

$$U=rac{N_{
m DOF}}{2}NkT \implies C=rac{{
m d}U}{{
m d}T}=rac{N_{
m DOF}}{2}Nk$$
 *Nk = nR

R = 0.08206 L atm/(mol K)

Entropy

- Microstate vs Macrostate:
 - Microstate: individual, **specific** arrangement
 - Macrostate: property that arises from the microstates
 - Many microstates can lead to the same macrostate
 - Two people have the same weight (macroststate), but the distribution of the weight can be different (microstate)

Entropy (Cont.)

- Entropy (S) is a measure of the degree of 'diversity' associated with a macrostate
 - \circ $S = k \ln(\Omega)$, where Ω is the number of microstates
 - **Second Law of Thermodynamics:** $\Delta S \ge 0$

- Equilibrium
 - Occurs when the macrostate of the system ceases to change
 - The most probable macrostate is the one with the highest entropy (most microstates)
 - Equilibrium is achieved when S, entropy, is maximized

Binomial Coefficient

If I have **N** coins and I am looking for the macrostate with **q** heads, the number of microstates:

$$\binom{N}{q} = \frac{N!}{q!(N-q)!}$$

Example: If I have **20 coins**, how many microstates are associated with the macrostate of getting **7** heads?

Answer:

Binomial Coefficient

If I have **N** coins and I am looking for the macrostate with **q** heads, the number of microstates:

$$\binom{N}{q} = \frac{N!}{q!(N-q)!}$$

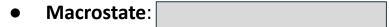
Example: If I have **20 coins**, how many microstates are associated with the macrostate of getting **7** heads?

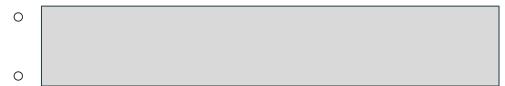
Answer:

$$\binom{20}{7} = \frac{20!}{7!(20-7)!} = 77520$$

• M	licrostate:		
-----	-------------	--	--

- Macrostate:
- What is the most likely macrostate?


What is the macrostate with the highest entropy?


	•	•	••	• •	••	
•	2	3	4	5	6	7
••	3	4	5	6	7	8
••	4	5	6	7	8	9
• •	5	6	7	8	9	10
	6	7	8	9	10	11
	7	8	9	10	11	12

- Entropy of a macrostate is simply a measure of the number of microstates associated with it
- More microstates → Higher Entropy, Higher Probability

Microstate: set of individual die values

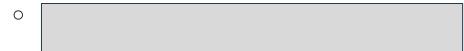
What is the most likely macrostate?

What is the macrostate with the highest entropy?

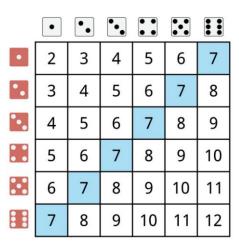
	•	••	••	• •		
•	2	3	4	5	6	7
••	3	4	5	6	7	8
•••	4	5	6	7	8	9
• •	5	6	7	8	9	10
	6	7	8	9	10	11
	7	8	9	10	11	12

- Entropy of a macrostate is simply a measure of the number of microstates associated with it
- More microstates → Higher Entropy, Higher Probability

- Microstate: set of individual die values
- Macrostate: sum of die values
- What is the most likely macrostate?


What is the macrostate with the highest entropy?

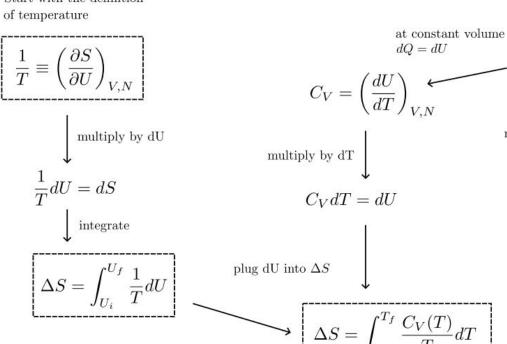
	•	••	••	• •		
•	2	3	4	5	6	7
••	3	4	5	6	7	8
••	4	5	6	7	8	9
• •	5	6	7	8	9	10
••	6	7	8	9	10	11
	7	8	9	10	11	12


- Entropy of a macrostate is simply a measure of the number of microstates associated with it
- More microstates → Higher Entropy, Higher Probability

- Microstate: set of individual die values
- Macrostate: sum of die values
- What is the most likely macrostate?
 - 7: has the largest number of microstates associated with it
 - \circ Probability = 6/36 = 0.167
- What is the macrostate with the highest entropy?

•	Entropy of a macrostate is simply a measure of th			
	number of microstates associated with it			

More microstates → Higher Entropy, Higher Probability



- Microstate: set of individual die values
- Macrostate: sum of die values
- What is the most likely macrostate?
 - 7: has the largest number of microstates associated with it
 - \circ Probability = 6/36 = 0.167
- What is the macrostate with the highest entropy?
 - Again, 7: has the largest number of microstates associated with it
- Entropy of a macrostate is simply a measure of the number of microstates associated with it
- More microstates → Higher Entropy, Higher Probability

	•	••	••	• •	••	
•	2	3	4	5	6	7
•.	3	4	5	6	7	8
••	4	5	6	7	8	9
• •	5	6	7	8	9	10
••	6	7	8	9	10	11
	7	8	9	10	11	12

Important Equations

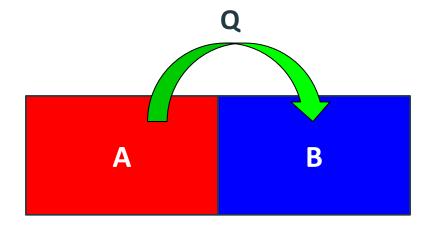
Start with the definition

Or the definition of heat capacity

$$C_V = \left(rac{dQ}{dT}
ight)_{V,N}$$
 multiply by dT $igg|$ $C_V dT = dQ$ integrate $igg|$ $\Delta U = \int^{T_f} C_V(T) dT$

Differential Manipulation

Know these tricks!


- Heat Capacity is the link between dU and dT
 - If you know the heat capacity and the temperature change, you can find the change in internal energy and the change in entropy

$$C = rac{\partial U}{\partial T} \implies \Delta U = \int_{T_i}^{T_f} C \mathrm{d}T$$

$$rac{\partial S}{\partial U} = rac{1}{T} \implies \Delta S = \int rac{\mathrm{d} U}{T} = \int_{T_i}^{T_f} rac{C \mathrm{d} T}{T}$$

Two blocks A and B, are in thermal contact and insulated from surroundings. Initially, block A is at a higher temperature than block B. Each block has a temperature-dependent heat capacity given by $C = pT^2$.

Determine the entropy change for each block

$$dS = \frac{dQ}{T}$$

$$dS = \frac{dQ}{T}$$

$$\Delta S = \int \frac{dQ}{T}$$

$$dS = \frac{dQ}{T}$$

$$\Delta S = \int \frac{dQ}{T}$$

$$C = \frac{dQ}{dT}$$

$$dS = \frac{dQ}{T}$$

$$\Delta S = \int \frac{dQ}{T}$$

$$C = \frac{dQ}{dT}$$

$$\Delta S = \int_{T_i}^{T_f} \frac{C \ dT}{T}$$

$$dS = \frac{dQ}{T}$$

$$\Delta S = \int \frac{dQ}{T}$$

$$C = \frac{dQ}{dT}$$

$$\Delta S = \int\limits_{T_i}^{T_f} \frac{C \ dT}{T}$$

$$\Delta S = \int_{T_i}^{T_f} \frac{pT^2}{T} dT$$

$$dS = \frac{dQ}{T}$$

$$\Delta S = \int \frac{dQ}{T}$$

$$C = \frac{dQ}{dT}$$

$$\Delta S = \int_{T_i}^{T_f} \frac{C \ dT}{T}$$

$$\Delta S = \int_{T_i}^{T_f} \frac{pT^2}{T} dT$$
$$= \int_{T_f}^{T_f} pT dT$$

$$dS = \frac{dQ}{T}$$

$$\Delta S = \int \frac{dQ}{T}$$

$$C = \frac{dQ}{dT}$$

$$\Delta S = \int_{T_i}^{T_f} \frac{C \ dT}{T}$$

$$\Delta S = \int_{T_i}^{T_f} \frac{pT^2}{T} dT$$
$$= \int_{T}^{T_f} pT dT$$

$$= p \frac{T_f^2}{2} - p \frac{T_i^2}{2} = \frac{p}{2} [T_f^2 - T_i^2]$$

$$dS = \frac{dQ}{T}$$

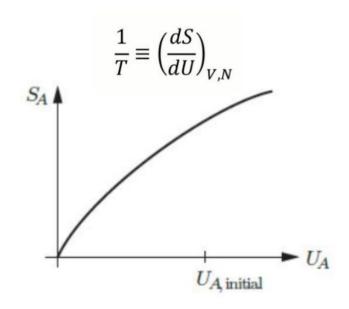
$$\Delta S = \int \frac{dQ}{T}$$

$$C = \frac{dQ}{dT}$$

$$\Delta S = \int_{T_i}^{T_f} \frac{C \ dT}{T}$$

$$\Delta S = \int_{T_i}^{T_f} \frac{pT^2}{T} dT$$
$$= \int_{T}^{T_f} pT dT$$

$$\Delta S_A = \frac{p}{2} [T_{A,f}^2 - T_{A,i}^2]$$


$$\Delta S_B = \frac{p}{2} [T_{B,f}^2 - T_{B,i}^2]$$

$$\Delta S_B = \frac{p}{2} \left[T_{B,f}^2 - T_{B,i}^2 \right]$$

$$= p \frac{T_f^2}{2} - p \frac{T_i^2}{2} = \frac{p}{2} [T_f^2 - T_i^2]$$

Entropy (S) vs. Internal Energy (U)

- Since slope is always positive, temperature is always positive
- More energy = greater entropy
- Diminishing returns: it gets harder and harder to increase the entropy as internal energy increases
- Decreasing slope = increasing temperature
 - More energy means greater temperature

Good luck!

Feel free to ask any questions you may have.

You got this!

