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Quiz 1 Worksheet Solutions

The problems in this review are designed to help prepare you for your upcoming exam. Questions

pertain to material covered in the course and are intended to reflect the topics likely to appear in

the exam. Keep in mind that this worksheet was created by CARE tutors, and while it is thorough,

it is not comprehensive. In addition to exam review sessions, CARE also hosts regularly scheduled

tutoring hours.

Tutors are available to answer questions, review problems, and help you feel prepared for
your exam during these times:

Wednesday, November 5th, 6-7:50 pm Alex, Luke, and Sarah

Can’t make it to a session? Here’s our schedule by course:

https://care.grainger.illinois.edu/tutoring/schedule-by-subject

Solutions will be available on our website after the last review session that we host.

Step-by-step login for exam review session:

1. Log into Queue @ Illinois: https://queue.illinois.edu/q/queue/844

2. Click “New Question”

3. Add your NetID and Name

4. Press “Add to Queue”

Please be sure to follow the above steps to add yourself to the Queue.

Good luck with your exam!

https://care.grainger.illinois.edu/programs/exam-review-sessions/
https://care.grainger.illinois.edu/tutoring/schedule-by-subject
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1 Here are some warm-ups to get you started!

1. Copper has a specific heat capacity of 376.812 J / kg K. Consider a copper ingot of mass 12
kg and at a temperature of 274.5 K. Given 3.67 kJ of energy delivered to the ingot:

(a) the heat capacity of the ingot

(b) the molar heat capacity of the ingot

(c) Calculate the ingot’s final temperature

(a) Dimensional Analysis Again! Multiply the specific heat capacity by its mass to get the
heat capacity of the copper ingot.
Answer: 4521.744 J/K

(b) To convert to molar heat capacity, we’ll use dimensional analysis:

376.812 J

kg K
× 1 kg

1000 g
× 63.546 g

1 mol
=

23.94 J

mol K

(c) Use Q = mc∆T =⇒ Tf = Q
mc

+ Ti = 275.31K

2. Below you are given an substance and its number of moles. Determine its heat capacity.
Hint:

U =
NDOF

2
NkT =⇒ C =

NDOF

2
Nk

(a) N2 gas, 4 moles

(b) solid aluminum, 6 moles

(c) argon gas, 8 moles

(a) 83.104 J/K

(b) 149.586 J/K

(c) 99.724 J/K

NDOF =:

• N2 Gas: 5(3 Translational,2 Rotational)

• Solid Aluminum: 6(3 Translational, 3 Elastic)

• Ar Gas: 3(3 Translational)

The number of atoms in a mole is Avogadro’s NumberNA = 6.022× 1023 Then the number
of atoms: N = nNA
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3. Below you are given heat capacity functions as well as initial and final temperatures. Using
the definition of temperature, determine the overall change in entropy. Hint:

1

T
=

∂S

∂U
=⇒ ∆S =

∫
dU

T
=⇒ ∆S =

∫ Tf

Ti

CdT

T

(a) C(T ) = 24 J/K, Ti = 300 K, Tf = 350 K

(b) C(T ) = αT 2, α = 0.05 J/K2, Ti = 300 K, Tf = 200 K

(c) C(T ) = βT 4 J/K, β = 0.0001 J/K5, Ti = 10 K, Tf = 130 K

(a) ∆S =
∫ 350

300
24 1

T
dT = 24ln(350

300
) = 3.7 J

K

(b) ∆S =
∫ 200

300
αT 2

T
dT = α

2
(2002 − 3002) = −1250 J

K

(c) ∆S =
∫ 130

10
β T 4

T
dT = β

3
(1303 − 103) = 7140 J

K

4. Let’s do some combinatorics! Find the number of possible combinations for N coin tosses
resulting in t tails :

(a) N = 10, t = 10

(b) N = 20, t = 4

(c) N = 100, t = 74

(a)
(
10
10

)
= N !

t!(N−t)!
= 1. This should hopefully make sense, there is only one way for 10 flips to

give 10 tails!

(b)
(
20
4

)
= 4845

(c)
(
100
74

)
≈ 7× 1023

2 Regular Problems

5. Label each statement as True or False.

(a) One mole of nitrogen gas has a different heat capacity than one mole of hydrogen gas.

(b) It is possible for the entropy of a single object to decrease.

(c) Equilibrium is defined as the point at which the entropies of each object in a system are all
equal.

(d) As you keep adding internal energy to an object, it becomes harder and harder to increase
its entropy.
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(e) A copper block weighing 1 kg has a different heat capacity than a copper block weighing 2
kg.

(a) False. The two gases have the same number of degrees of freedom (5), so if they have the
same number of moles, they have the same heat capacity.

(b) True. This is allowed if the total entropy of a system increases, such as in the heat transfer
of two blocks at different temperatures.

(c) False. Equilibrium occurs when total entropy is maximized. Other quantities become equal
at equilibrium, such as temperature.

(d) True. Look at the definition of temperature:

1

T
=

∂S

∂U

As you add energy, the temperature goes up, so ∂S/∂U decreases. This means that the rate
at which the entropy increases as you add energy decreases.

(e) True. Specific heat capacity is unique to each material and has units J/ kg K. The two blocks
would have different heat capacities because of their different masses, but their specific heat
capacities would be the same since they’re both copper.

6. Consider 5 coins, each initially starting on heads.

(a) What is the entropy, S, of this system in its current configuration?

(b) List all the macrostates available to this system.

(c) Identify the most probable macrostates. Hint: there are two.

(d) How many microstates would lead to the macrostates identified above?

(e) Calculate the change in entropy, ∆S, if the system changed to either of its most probable
macrostates.

(a) The first thing to note here is that this system is in a 5H 0T macrostate (in this scenario,
macrostates are the number of heads up (or tails) in a given configuration). There’s only
one way to attain 5 heads − all of them are heads! So there is one microstate corresponding
to this macrostate. We can now use the statistical definition of entropy, S = kb ln(Ω), with
the microstates in this configuration, Ω, equalling one. Thus,

S = kb ln(1) = 0 (1)

Which is a reasonable answer because this system is highly uniform.

(b) The macrostates of this system are all the combinations of heads (H) and tails (T) available
to the 5 coins.
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5H 0T
4H 1T
3H 2T
2H 3T
1H 4T
0H 5T

(c) The most probable macrostates have the highest number of associated microstates.

3H 2T
2H 3T

(d) To calculate the number of microstates in either of these macrostates, we must use the
combination formula, nCr, where n is the total number of items in the set (5), and r is the
number of items we’re choosing (hence n choose r).

5C3 =5 C2 = 10 microstates

(e) The change in entropy is found by taking the difference of the final state entropy, Sfinal, and
initial state entropy, Sinitial.

∆S = Sfinal − Sinitial = kb ln(10)− kb ln(1) = kb ln(10)

Note that the entropy increased, as we would expect by the second law of thermodynamics.

7. The heat capacity of a solid is linear with temperature. How does its entropy change with
temperature?
The entropy will also increase linearly. To show this, let C = αT

∆S =

∫
C

T
dT =

∫
α dT = α∆T

Essentially, the T in the denominator reduces the heat capacity by a factor of T , but that
factor is restored by the integral.

8. The figure below shows entropy S vs. internal energy U graphs for two objects, A and B.
Both graphs are on the same scale. The internal energies of these two objects initially have
the values indicated in the figure below.
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(a) The objects are then brought into thermal contact with each other. Determine which of the
following will happen.

i. Heat will transfer from object A to object B.

ii. Heat will not transfer between the objects.

iii. Heat will transfer from object B to object A.

(b) Which of the following is a correct statement?

i. ∆SA = 0, ∆SB = 0

ii. ∆SA > 0, ∆SB > 0

iii. ∆SA < 0, ∆SB > 0

iv. ∆SA > 0, ∆SB < 0

(a) Answer: iii. Heat will transfer from object B to object A. To answer this question we will
need to use the following relationship:

1

T
=

∂S

∂U

The slope of graph A is larger than that of graph B. This means that object A is at a lower
temperature than object B. This is because a larger slope means that the temperature has
to be smaller (The slope of S vs U graphs is 1/T , not T ). Since object A is at a lower
temperature than object B, heat must flow from object B to object A (heat flows from hot
to cold).

(b) Answer: iv. We already established in part (a) that heat must flow from Object B to Object
A (heat flows from hot to cold). If heat is flowing from object B to object A, then object B
is losing energy while object A is gaining energy. This implies that ∆SA > 0 and ∆SB < 0.
Another way of coming to this conclusion is to utilize the following two equations:

1

T
=

∂S

∂T
and C =

dU

dT
.

By performing some differential substitutions, we get

∆S =

∫ Tf

Ti

C

T
dT = C ln(Tf/Ti).
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Using the analysis above, we can see that ∆S will be negative if the equilibrium temperature
is smaller than the initial temperature. And ∆S will be positive if the equilibrium temper-
ature is greater than the initial temperature. Since heat is flowing from object B to object
A, the equilibrium temperature will be smaller than the initial temperature of object B.

9. What is the difference between heat capacity, specific heat capacity, and molar heat capac-
ity?
Physically, these three quantities are measuring the same thing: an object’s tendency to
increase in temperature as heat is added to it. However, the difference between these three
is the units that they are expressed in.

Heat Capacity

C ≡ dQ
dT

Specific Heat

csp ≡ C
m

Molar Heat

cmol ≡ C
n

Where m is the mass and n is the number of moles of the substance.

Therefore, the units on each of these quantities is

Heat Capacity:
J

K

Specific Heat:
J

kg ·K

Molar Heat:
J

mol ·K

10. Substance A has a heat capacity of 3 J/K while substance B has a heat capacity of 5 J/K.
Starting from the same temperature, which one cools at a faster rate?
The units for heat capacity are J/K. Interpreting this, a heat capacity tells us the amount
of energy required to raise or lower an object’s temperature by 1 Kelvin. So you may be
tricked into thinking at first that a higher heat capacity means a greater tendency to heat
up, but that’s not true. A lower heat capacity means less energy is required for temperature
changes (heating and cooling), so objects with lower heat capacities will change temperature
at faster rates.

Substance A
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11. Explain why the heat capacity at constant volume of an ideal solid is twice that of the same
amount of a monatomic ideal gas.
At constant volume, heat capacity is the derivative of internal energy

Cv =
dU

dT

Where U = D
2
NkbT where D is the number of degrees of freedom.

For a ideal solid, there are six degrees of freedom; 3 translational and 3 vibrational (D = 6).
But for a monatomic ideal gas, there are only 3 degrees of freedom; 3 translational (D = 3).
When the derivative of internal energy is taken to obtain heat capacity, these constants
remain.

12. A sealed container with a mass of 2.7 kg is filled with 4 moles of helium gas. Initially, the
helium gas is at a temperature of 140°C and the container is at 38°C. The helium-container
system is thermally isolated.

Note that the specific heat of the material making the container is 386 J/(kg·K) and the
molar specific heat of helium is 12.5 J/(mol·K).

Find the equilibrium temperature of the system in Celsius and Kelvin.
The helium-container system is isolated from any heat conducting environment. So, by
conservation of energy, we know that QHe = −QC . One thing to see is that the heat
capacities in the question have different units − one is specific heat, the other is molar heat.
Using the fact that Q = C∆T where C is regular heat capacity, we can do the following

QHe = −QC

ncmol(Tf − THe,i) = −mcsp(Tf − TC,i)

were n is the moles of Helium, m is the mass of the container, and Tf is the equilibrium
temperature (which is the same for both the Helium and the container by the definition of
thermal equilibrium). Solving for Tf

Tf =
ncmolTHe,i +mcspTC,i

ncmol +mcsp

And when the values given above are put into this equation, we get

Tf = 315.8 K = 42.7°C

Remember to convert the temperatures to Kelvin in the equations, then back
to Celsius for the final answer.
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13. (Note: this question uses fictional elements.) Consider a block of Wesleyium connected to
a block of Vedhamite. A cylinder of Matthewide (thermal conductivity 10 W

m K
and length

2 m) connects the two. The Matthewide cylinder has a cross-sectional area of 1 m3. The
temperature difference between the two blocks is 20 degrees Celsius, and approximately 51
Joules of heat is transported between the two blocks through the cylinder. How long does
this process take?

We reference the equation:

q′′ = K
T2 − T1

L
= 10

20

2
= 100 W/m2 (2)

The heat flux q” can be written as q′′ = Q/(At) where Q is the total heat transferred (in
joules) and t is the time taken to make the transfer. The area A is just 1 m3, the cross-
sectional area. Thus:

t = Q/(q′′A) =
51

100 ∗ 1
=⇒ t = 0.51 seconds

14. Let’s say I have a gas of diatomic molecules such that at a high enough temperature, Tcrit =
500 K, the number of degrees of freedom for each molecules increases from 5 to 7. If I have
6 moles of this gas, determine the amount of energy I would need to add to it to go from
Ti = 200 K to Tf = 800 K.
∆U = 89.752 kJ. First, determine the amount of energy required to get to the transition
temperature (500 K):

∆U1 =

∫ Tcrit

Ti

CdT

= C(Tcrit − Ti)

=
5

2
nR(Tcrit − Ti)

= 37.397 kJ

Then, find the energy required to get to the final temperature with 7 DOFs:

∆U2 =

∫ Tf

Tcrit

CdT

= C(Tcrit − Ti)

=
7

2
nR(Tf − Tcrit)

= 52.355 kJ

Adding these together, we get ∆U = 89.752 kJ.
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15. Suppose we have a box of two gases as the same temperature in an insulating chamber
partitioned by an impermeable membrane. This membrane is free move back and forth,
changing the left and right volumes, VA and VB. The entropy of gas A and B can be
described with the following equations:

SA = nAR ln(VA) + f(UA, NA)

SB = nBR ln(VB − bnB) + f(UA, NA)

Here, nA = 4 mol nB = 3 mol, and b = 6× 10−5 m3/mol. The total volume of the container
is 6 m3.

(a) Find the volumes V f
A and V f

B that result from the system achieving equilibrium.

(b) We are told the initial volumes were V i
A = 1 m3 and V i

B = 5 m3. Determine the change in
total entropy ∆S, and confirm that this value is positive.

(c) Let’s say that instead of a moving impermeable membrane, we had an immovable permeable
membrane with the same initial volumes. How would the entropy maximization process
change? What would stay constant, and what would change to maximize entropy? Do we
have enough information to do this? (You don’t have to do any math, just explain in words.)

(a) Remember that the system achieves equilibrium when entropy has been maximized. The
only variable that can change in this system is the volume of each chamber, so at maximum
entropy, the derivative with respect to volume should be zero. Let’s differentiate with respect
to VA:

∂S

∂VA

= 0 =
∂SA

∂VA

+
∂SB

∂VA

=
∂SA

∂VA

− ∂SB

∂VB

We know the total volume, which we can call V . Thus VB = V − VA:

0 =
nAR

VA

− nBR

V − VA − bnB

nAR

VA

=
nBR

V − VA − bnB

VAnB + VAnA = nA(V − bnB)

VA =
nA(V − bnB)

nA + nB

= 3.428 m3

Thus V f
A = 3.428 m3 and V f

B = 2.572 m3.
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(b)

∆SA = nAR ln
(
V f
A/V

i
A

)
= (4)(8.314) ln(3.428/1)

= 40.975 J/K

∆SB = nBR ln

(
V f
B − bnB

V i
B − bnB

)
= −16.586 J/K

∆S = ∆SA +∆SB

= 24.389 J/K

As expected, this value is positive.

(c) Since the membrane is immovable, the volumes would stay the same. Instead, since the
membrane is permeable, the gas particles of A and B would be able to traverse the membrane,
thus NA and NB would change to maximize entropy. In order to do this, we would need to
know the function f , as it depends onNA andNB, so we don’t have enough given information.
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