MATH 257 Exam 3 CARE Review

Please join the queue!

https://queue.illinois.edu/a/queue/955

We cannot start until everyone has joined!


https://queue.illinois.edu/q/queue/955

In-Person Resources

Course Office hours:
TAs: Mondays - Thursdays 5-7pm

CARE Drop-in tutoring: Mondays: Engineering 106B3
Tuesdays: Loomis 137

/ dayg . Wee.k on ’[t‘]e 4th floor Wednesdays: Engineering 106B8

of Gralnger I—lbrarY- Thursdays: Engineering 106B8

Sunday - Thursday 12pm-10pm Instructors:

Friday & Saturday 12—6pm Chuang: M 4-5PM in Harker 314D

Berwick-Evans: W 3-4PM in Harker 314D

Subject Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Math 257 2pm-9pm  12pm-4pm 12pm-10pm 12pm-2pm 12pm-2pm  1lpm-6pm 2pm-4pm
8pm-10pm 3pm-10pm 4pm-8pm




Topic Summary

- Linear Transformation - Diagonalization

- Coordinate Matrices - Matrix powers

- Determinants - Matrix exponential

- Eigenvectors and - Linear differential
eigenvalues equations

- Markov Matrices - Projections

- Least Squares/
Regression



Linear Transformations

Definition. Let V and W be vector spaces. A map T : V — W is a linear transformation if

T(av+ bw) = aT(v) + bT (w)
forallv,we Vandall a,b € R

Theorem 50. Let T: R" — R™ be a linear transformation. Then there is a m X n matrix A
such that

© T(v)=Av, forallveR".
© A=[T(e1) T(e2) ... T(en)|, where (e1,eo,...,e,) is the standard basis of R".

Remark. We call this A the coordinate matrix of T with respect to the standard bases - we
write Tgm,gn.



Coordinate matrices

Theorem 51. Let V, W be two vector space, let B = (by,...,b,) be a basis of V and
C =(c1,...,cm) be a basis of W, and let T: V. — W be a linear transformation. Then there
Isa mx n matrix T¢c g such that

© T(v)e= Tenvp, forallveV.
© Tep=|T(bi)e T(b2)e ... T(bn)].

apply T

v : vector in V vector in W : T(v)

write in coordinates wrt Bj lwrite in coordinates wrt C

: : multiply by T¢ 5 . :
vz : coordinate vector in R” coordinate vector in R™ : T¢ v




Determinants
(how to find them)

2x2: easy formula!

([ ) o

Triangular: multiply all of the
diagonal entries together

Otherwise: cofactor expansion
Note: if the matrix A is not

invertible, det(A) = 0 « this is the
definition of a determinant!



Cofactor Expansion

Definition. Let A be an n x n-matrix. The (i, j)-cofactor of A is the scalar Cj; defined by
Cij = (—1) det A;.

Procedure for large matrices:
- Pick one row or one column to eliminate
- Go one by one in the other dimension (row or column) and ignore all the
entries in that row + column
- Calculate the cofactor
- Find the determinant of the remaining matrix

This is very impractical for anything larger than 3x3!



Cofactor Expansion Example

1

= 2-(—1)**%. 3 2

1

H-1)(-1)2*

2

2

==2:(=1)+(-1):1=0=1

1 2

3 =1
2 0

+2.(—-1)*3. +1.(-1)*3.| 3 -1

2 0

—0-2-(-4)+1-(-7)=1



Properties of determinants

(Replacement) Adding a multiple of one row to another row does not change the
determinant.

(Interchange) Interchanging two different rows reverses the sign of the determinant.
(Scaling) Multiplying all entries in a row by s, multiplies the determinant by s.

These three things also apply to the columns of a matrix!

Let A, B be two n x n-matrices. Then det(AB) = det(A) det(B)

If Ais invertible, then det(A™1) = det(A)

Let A be an n x n-matrix. Then det(AT) = det(A)



An eigenvector of A is a nonzero v € R"
such that

Eigenvectors and
Eigenvalues Av = Av

An eigenspace is all the eigenvectors
associated with a specific eigenvalue.

Eigenvectors are always linearly independent!




Calculating eigenvectors and eigenvalues

Theorem 59. Let A be an n x n matrix. Then pa(t) := det(A — tl) is a polynomial of
degree n. Thus A has at most n eigenvalues.

Definition. We call pa(t) the characteristic polynomial of A.
The roots of the characteristic polynomial are the eigenvalues

Let A be n X n matrix and let \ be eigenvalue of A. Then

Eig,(A) = Nul(A — \J).

General algorithm: 1) find det(A-Al) and solve for A
2) plug each eigenvalue back into A-Al
3) solve for the nullspace




Eigenvalue/eigenvector example

3—A 2 3
0 6—-—A 10
0 0 2 —A

det(A — \/) = —(3=A)(6—N)(2-))

~> A has eigenvalues 2,3,6. The eigenvalues of a triangular matrix are its diagonal entries.

1 2 3] [1 0 —2] [ 2 ]
A =2 A—2/=10 4 10J o [0 1 2.5J ~> Nul(A — 2/) = span L_5/2J
0 0 0 0 0 0 1
0 2 3} [o 1 o] [1]
A2 =3 A—3/=10 3 10 Jodk 0 0 1; ~ Nul(A—3/)=span| {0
0 0 —J [o 0 oJ [OJ
g D 3} [1 - o] [g]
A3 =06 A—6/=10 0 10 b 0 0 1; ~Nul(A—6/)=span| |1
0 0 —4J Lo 0 oJ [OJ




Properties of
Eigenvalues and
Eigenvectors

For a 2x2 matrix:

p(A\) = A2 — Tr(A)X + det(A)

Multiplicity:

- Algebraic multiplicity is the
multiplicity of A in the
characteristic polynomial

- Geometric multiplicity is the
dimension of the eigenspace
of A

Trace: the sum of the diagonal
entries of a matrix
- Tr(A) = sum of all eigenvalues
- det(A) = product of all
eigenvalues



The matrix A has the eigenvalues as given. Compute
an eigenvector corresponding to each eigenvalue.

A1 =6 A2 =10

et

—60 46

General algorithm: 1) find det(A-Al) and solve for A
2) plug each eigenvalue back into A-Al
3) solve for the nullspace




Solutions

The matrix A has the eigenvalues as given. Compute —30 24
; : : AM=6 A=10 A=
an eigenvector corresponding to each eigenvalue. —60 46
—-36 24 . _|—40 24
A—-\MI=A-6I= [—60 40] A—XI=A-10] = [—60 36]

vt 1) = s { [ o]} = { [} | mutca - 100 = pan { [ ]} = spn { ]}
-] -




Markov Matrices

Definition: a square matrix with
non-negative entries where the
sum of terms in each column is 1

A probability vector has entries
thatadd up to 1

The A of a Markov Matrix:

- 1 is always an eigenvalue, and
the corresponding eigenvector
is called stationary

- All other [\| £ 1



Why is a Markov Matrix useful?

Theorem 65. Let A be an n x n-Markov matrix with only positive entries and let z € R" be
a probability vector. Then

Zoo 5= i Az exists,
k—o0

and z, is a stationary probability vector of A (ie. Az, = z,).

This basically says you can left multiply A with z infinitely and you will
get a stationary probability vector (steady state)

D x¢: % of population employed at time t

9 ‘ 5 yt: % of population unemployed at time t

1 Xt+1 _ -9Xt+-5yt _ 9 b Xt
| yii1 1x: + 5y 1 5|y



How to approach a
Markov Matrix
problem

Write out the Markov Matrix A. If it
helps, make a graph like on the
previous slide.

Determine what the question is
asking you to solve for. Steady
state? Intermediate state?

Write the probability vector of
what you know of the initial state,
if possible.

To solve for the steady state: Find
A-1*] and solve for the nullspace,
then find the probability vector in
the nullspace

To solve for an intermediate state:
multiply the initial state vector by
the Markov matrix the appropriate
number of times.




Diagonalization

P = [vl vn]

Vv are eigenvectors

For a matrix A to be diagonalizable:

- A must be square

- A must have as many unique
eigenvectors as rows/columns
(i.e. it has an eigenbasis)

- A =PDPT

Observe that
A= PDP ! =g, sDIgg,

Where B is the eigenbasis —

diagonalizing is a base change to the
eigenbasis



Matrix Powers and Matrix power: diagonal matrices are

: : | . ——
Matrix Exponential Y aAm = pomp
(A1) ]
Where D™ =
. x x? x3 :
=1+ o+t ot _ (An)™

Matrix exponential:

(AP | (AP

F=1+ At
AT 21 3!

At - PeDtP—].




Linear Differential

Equatlons Let A be an n X n matrix and v € R"
The solution of the differential
equation %‘i‘- = Au with initial condition

u(0) = v isu(t) = e’tv

du With initial condition:

u(0) =v

— = Au
dt
If v.,v,,...v_is an eigenbasis of A:

Aty = c1e>‘1tv1 + -+ c,,e>‘"tv,7




Projecting v onto w yields the vector in
span(w) that is closest to v.

Vector Projections

Projection of v onto w

The error term is v - proj_(v) and is in
span(w)*

Can also use:

S —

W-w

Error term

Where the boxed term is called the
orthogonal projection matrix onto
span(w)




Subspace Projections

Let W be a subspace of R" and v € R". Then v can be written uniquely as

L

V= V -+ vl
N =
in W in WL

v is calculated by projecting v onto an orthogonal basis of W

P,, is the orthogonal projection matrix for subspace W. Calculate P, by
projecting each column of the identity matrix onto W and join them all in a matrix

Q = | — Py, where [ is the identity. Then Py, = Q



Least Squares

Solutions:

Trying to minimize the
distance between Ax and
b for an inconsistent
system

AR = projcoi(a)(b)

LSQ
solution

General algorithm:
ATAx = ATb
Find AT and ATA, then solve the above

system with any method you prefer.

For linear regressions:

1 x 1 b
Ax|1 x Bi| ¥2 4
1 x3 52 y3
1 x] X Va
L I )’E [
design matrix X observation vector y

The shape of the design matrix
depends on the problem!



Given the following data points, Set up the least squares equation to solve for the
coefficients to create a fit function of the form y = ax + Bln(z) + ycos(z)

Data Points:

(
(
(
(
(

1,2.576)
2, —0.345)
3, —2.393)
4,0.087)
5,5.018)

Reminder:

General algorithm:
ATAx = ATb

For linear regressions:

(1 x| il b
Adll x Bi| y2 4
1 x3 B2 y3
1 X L | Va_
I X (I

design matrix X observation vector y



Solution

Given the following data points, Set up the least squares equation to solve for the
coefficients to create a fit function of the form y = ax + Bln(z) + ycos(z)

Data Points: If there is no noise in the data, the following is a consistent system
(1,2.576) iy
(2, —0.345) (1 In(1)  cos(1)] [ 2.576
(3, —2.393) 2 In(2) cos(2)| |a —0.345
(4,0.087) 3 In(3) cos(3)| |B| = |—2.393
4 In(4) cos(4)| |« 0.087
(5,5.018) 5 In(5) cos(5) | 5.018




Solution

Given the following data points, Set up the least squares equation to solve for the
coefficients to create a fit function of the form y = ax + Bln(z) + ycos(z)

The system is inconsistent, so we use the LSQ: AT Az = AT§

1 In(1)  cos(1)] Tt In(1)  cos(1)] (1 In(1)  cos(1)] T 2576
2 In(2) cos(2) 2 In(2) cos(2)} |a 2 In(2) cos(2) —0.345
3 In(3) cos(3) 3 In(3) cos(3)| |B]| =13 In(3) cos(3) —2.393
4  In(4) cos(4) 4 In(4) cos(4) [J 4  In(4) cos(4) 0.087

5 In(5) cos(5)] |5 In(5) cos(5) 5 In(5) cos(5)] | 5.018




In-Person Resources

Course Office hours:
TAs: Mondays - Thursdays 5-7pm

CARE Drop-in tutoring: Mondays: Engineering 106B3
Tuesdays: Loomis 137

/ dayg . Wee.k on ’[t‘]e 4th floor Wednesdays: Engineering 106B8

of Gralnger I—lbrarY- Thursdays: Engineering 106B8

Sunday - Thursday 12pm-10pm Instructors:

Friday & Saturday 12—6pm Chuang: M 4-5PM in Harker 314D

Berwick-Evans: W 3-4PM in Harker 314D

Subject Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Math 257 2pm-9pm  12pm-4pm 12pm-10pm 12pm-2pm 12pm-2pm  1lpm-6pm 2pm-4pm
8pm-10pm 3pm-10pm 4pm-8pm




Questions?

Join the queue to see the worksheet!



Important Definitions

Characteristic Polynomial: pa(\) = det(A — AI) =0

Eigenvectors/Eigenspaces: v € null(A — \I) = Eigx(A)

Linearity: 7(ag + gb) = o7(a@) + BT (b)

Coordinate Inverse: 1, =1;;

2x2 Determinant: det(A2x2) = ad — bc

Diagonalization: A = PDP~! P=[vi--v;] D =diag(\1---\n) .

Linear Differential Equation Solution: i — Aq @(0) =7 @=e"v=>) cety
Linear Least Squares: A7 Az = ATb = & = (ATA)"'Ab =
General Projections: p = A(AT 4)~' 4"

-
‘v

g,

1D Projections: proj;(7) = w Determinant & Trace: det(4) =[] X tr(4) =) M\
1

g,

w -



