MATH 257 Exam 3 CARE Review

Please join the queue!

https://queue.illinois.edu/q/queue/955

We cannot start until everyone has joined!

In-Person Resources

CARE Drop-in tutoring:

7 days a week on the 4th floor of Grainger Library! Sunday - Thursday 12pm-10pm Friday & Saturday 12-6pm

Course Office hours:

TAs: Mondays - Thursdays 5-7pm Mondays: Engineering 106B3

Tuesdays: Loomis 137

Wednesdays: Engineering 106B8 Thursdays: Engineering 106B8

Instructors:

Chuang: M 4-5PM in Harker 314D

Berwick-Evans: W 3-4PM in Harker 314D

Subject	\Rightarrow	Sunday 🕈	Monday 🕈	Tuesday 🕈	Wednesday 🕈	Thursday 🔷	Friday 🕈	Saturday 🕈
Math 257		2pm-9pm	12pm-4pm	12pm-10pm	12pm-2pm	12pm-2pm	1pm-6pm	2pm-4pm
			8pm-10pm		3pm-10pm	4pm-8pm		

Topic Summary

- Linear Transformation
- Coordinate Matrices
- Determinants
- Eigenvectors and eigenvalues
- Markov Matrices

- Diagonalization
- Matrix powers
 - Matrix exponential
- Linear differential equations
- Projections
- Least Squares/ Regression

Linear Transformations

Definition. Let V and W be vector spaces. A map $T:V\to W$ is a **linear transformation** if

$$T(a\mathbf{v} + b\mathbf{w}) = aT(\mathbf{v}) + bT(\mathbf{w})$$

for all $\mathbf{v}, \mathbf{w} \in V$ and all $a, b \in \mathbb{R}$.

Theorem 50. Let
$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 be a linear transformation. Then there is a $m \times n$ matrix A such that

$$T(\mathbf{v}) = A\mathbf{v}, \quad \text{for all } \mathbf{v} \in \mathbb{R}^n.$$

$$A = \begin{bmatrix} T(\mathbf{o}_{\mathbf{v}}) & T(\mathbf{o}_{\mathbf{v}}) \\ T(\mathbf{o}_{\mathbf{v}}) & T(\mathbf{o}_{\mathbf{v}}) \end{bmatrix} \quad \text{where } (\mathbf{o}_{\mathbf{v}}, \mathbf{o}_{\mathbf{v}}, \mathbf{o}_{\mathbf{v}}) \text{ is the standard basis of } \mathbb{R}^n.$$

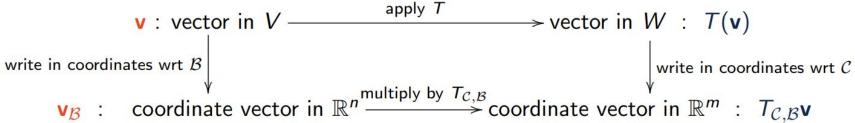
 $oldsymbol{\Theta}$ $A = egin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \dots & T(\mathbf{e}_n) \end{bmatrix}$, where $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ is the standard basis of \mathbb{R}^n .

Remark. We call this A the **coordinate matrix of** T with respect to the standard bases - we write $T_{\mathcal{E}_m,\mathcal{E}_n}$.

Coordinate matrices

Theorem 51. Let V, W be two vector space, let $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ be a basis of V and $\mathcal{C} = (\mathbf{c}_1, \dots, \mathbf{c}_m)$ be a basis of W, and let $T \colon V \to W$ be a linear transformation. Then there is a $m \times n$ matrix $T_{\mathcal{C},\mathcal{B}}$ such that

- $T(\mathbf{v})_{\mathcal{C}} = T_{\mathcal{C},\mathcal{B}}\mathbf{v}_{\mathcal{B}}, \quad \text{for all } \mathbf{v} \in V.$



Determinants (how to find them)

2x2: easy formula!

$$\det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$$

Triangular: multiply all of the diagonal entries together

Otherwise: cofactor expansion

Note: if the matrix A is not invertible, $det(A) = 0 \leftarrow this$ is the definition of a determinant!

Cofactor Expansion

Definition. Let A be an $n \times n$ -matrix. The (\mathbf{i}, \mathbf{j}) -cofactor of A is the scalar C_{ij} defined by $C_{ij} = (-1)^{i+j} \det A_{ij}$.

Procedure for large matrices:

- Pick one row or one column to eliminate
- Go one by one in the other dimension (row or column) and ignore all the entries in that row + column
 - Calculate the cofactor
 - Find the determinant of the remaining matrix

This is very impractical for anything larger than 3x3!

Cofactor Expansion Example

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 2 \cdot (-1)^{1+2} \cdot \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + (-1) \cdot (-1)^{2+2} \cdot \begin{vmatrix} 1 & 0 \\ 3 & + 1 \end{vmatrix} + 0 \cdot (-1)^{3+2} \cdot \begin{vmatrix} 1 & 0 \\ 3 & 2 \end{vmatrix}$$
$$= -2 \cdot (-1) + (-1) \cdot 1 - 0 = 1$$

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 0 \cdot (-1)^{1+3} \cdot \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix} + 2 \cdot (-1)^{2+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 2 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1 \cdot (-1)^{3+3} \cdot \begin{vmatrix}$$

$$= 0 - 2 \cdot (-4) + 1 \cdot (-7) = 1$$

Properties of determinants

(Replacement) Adding a multiple of one row to another row does not change the determinant.

(Interchange) Interchanging two different rows reverses the sign of the determinant.

(Scaling) Multiplying all entries in a row by s, multiplies the determinant by s.

These three things also apply to the columns of a matrix!

Let A, B be two $n \times n$ -matrices. Then det(AB) = det(A) det(B)

If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$

Let A be an $n \times n$ -matrix. Then $det(A^T) = det(A)$

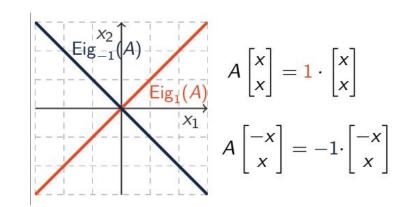
Eigenvectors and Eigenvalues

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

An **eigenvector** of A is a nonzero $\mathbf{v} \in \mathbb{R}^n$ such that

$$A\mathbf{v}=\lambda\mathbf{v}$$
 eigenvalue

An eigenspace is all the eigenvectors associated with a specific eigenvalue.



Eigenvectors are always linearly independent!

Calculating eigenvectors and eigenvalues

Theorem 59. Let A be an $n \times n$ matrix. Then $p_A(t) := det(A - tI)$ is a polynomial of degree n. Thus A has at most n eigenvalues.

Definition. We call $p_A(t)$ the characteristic polynomial of A.

The roots of the characteristic polynomial are the eigenvalues

Let A be $n \times n$ matrix and let λ be eigenvalue of A. Then

$$\operatorname{Eig}_{\lambda}(A) = \operatorname{Nul}(A - \lambda I).$$

General algorithm: 1) find det(A-λI) and solve for λ 2) plug each eigenvalue back into A-λI 3) solve for the nullspace

Eigenvalue/eigenvector example

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 & 3 \\ 0 & 6 - \lambda & 10 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(6 - \lambda)(2 - \lambda)$$

 \rightarrow A has eigenvalues 2, 3, 6. The eigenvalues of a triangular matrix are its diagonal entries.

$$\lambda_{1} = 2: \qquad A - 2I = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \underset{RREF}{\sim} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2.5 \\ 0 & 0 & 0 \end{bmatrix} \rightsquigarrow \text{Nul}(A - 2I) = \text{span}\left(\begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix} \right)$$

$$\lambda_2 = 3:$$
 $A - 3I = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 10 \\ 0 & 0 & -1 \end{bmatrix} \underset{RREF}{\sim} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \text{Nul}(A - 3I) = \text{span}\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right)$

$$\lambda_3 = 6: \qquad A - 6I = \begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 10 \\ 0 & 0 & -4 \end{bmatrix} \underset{RREF}{\sim} \begin{bmatrix} 1 & \frac{-2}{3} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightsquigarrow \text{Nul}(A - 6I) = \text{span}\left(\begin{bmatrix} \frac{2}{3} \\ 1 \\ 0 \end{bmatrix}\right)$$

Properties of Eigenvalues and Eigenvectors

For a 2x2 matrix:

$$p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A)$$

Multiplicity:

- Algebraic multiplicity is the multiplicity of λ in the characteristic polynomial
- **Geometric** multiplicity is the dimension of the eigenspace of λ

Trace: the sum of the diagonal entries of a matrix

- Tr(A) = sum of all eigenvalues
- det(A) = product of all eigenvalues

You Try!

The matrix A has the eigenvalues as given. Compute an eigenvector corresponding to each eigenvalue.

$$\lambda_1 = 6$$
 $\lambda_2 = 10$

$$A = \begin{bmatrix} -30 & 24 \\ -60 & 46 \end{bmatrix}$$

General algorithm: 1) find det(A-λI) and solve for λ 2) plug each eigenvalue back into A-λI 3) solve for the nullspace

Solutions

The matrix A has the eigenvalues as given. Compute an eigenvector corresponding to each eigenvalue.

$$A - \lambda_1 I = A - 6I = \begin{bmatrix} -36 & 24 \\ -60 & 40 \end{bmatrix}$$

$$null(A-6I) = span\left\{\begin{bmatrix}1\\ \frac{-60}{-40}\end{bmatrix}\right\} = span\left\{\begin{bmatrix}2\\ 3\end{bmatrix}\right\}$$

$$ec{v}_1 = egin{bmatrix} 2 \ 3 \end{bmatrix}$$

$$\lambda_1 = 6$$
 $\lambda_2 = 10$ $A = \begin{bmatrix} -30 & 24 \\ -60 & 46 \end{bmatrix}$

$$A - \lambda_2 I = A - 10I = \begin{bmatrix} -40 & 24 \\ -60 & 36 \end{bmatrix}$$

$$null(A - 10I) = span\left\{ \begin{bmatrix} 1\\ \frac{-60}{-36} \end{bmatrix} \right\} = span\left\{ \begin{bmatrix} 3\\ 5 \end{bmatrix} \right\}$$

$$\vec{v}_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

Markov Matrices

Γο	.25	.4		
0 1 0	.25	.4 .2 .4		
[o	.5	.4		

Definition: a square matrix with non-negative entries where the sum of terms in each column is 1

A **probability vector** has entries that add up to 1

The λ of a Markov Matrix:

- 1 is always an eigenvalue, and the corresponding eigenvector is called **stationary**
- All other $|\lambda| \le 1$

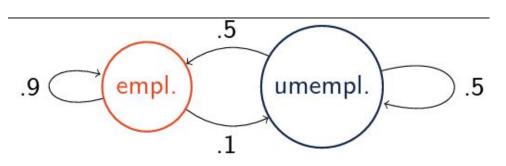
Why is a Markov Matrix useful?

Theorem 65. Let A be an $n \times n$ -Markov matrix with only positive entries and let $\mathbf{z} \in \mathbb{R}^n$ be a probability vector. Then

$$\mathbf{z}_{\infty} := \lim_{k \to \infty} A^k \mathbf{z} \text{ exists,}$$

and \mathbf{z}_{∞} is a stationary probability vector of A (ie. $A\mathbf{z}_{\infty} = \mathbf{z}_{\infty}$).

This basically says you can left multiply A with **z** infinitely and you will get a stationary probability vector (steady state)



 x_t : % of population employed at time t y_t : % of population unemployed at time t

$$\begin{bmatrix} x_{t+1} \\ y_{t+1} \end{bmatrix} = \begin{bmatrix} .9x_t + .5y_t \\ .1x_t + .5y_t \end{bmatrix} = \begin{bmatrix} .9 & .5 \\ .1 & .5 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix}$$

How to approach a Markov Matrix problem

- 1. Write out the Markov Matrix A. If it helps, make a graph like on the previous slide.
- 2. Determine what the question is asking you to solve for. Steady state? Intermediate state?
- 3. Write the probability vector of what you know of the initial state, if possible.
- 4. To solve for the **steady state**: Find A-1*I and solve for the nullspace, then find the probability vector in the nullspace
- 5. To solve for an **intermediate state**: multiply the initial state vector by the Markov matrix the appropriate number of times.

Diagonalization

$$P = \begin{bmatrix} \mathbf{v_1} & \dots & \mathbf{v_n} \end{bmatrix}$$

v are eigenvectors

$$D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

For a matrix A to be diagonalizable:

- A must be square
- A must have as many unique eigenvectors as rows/columns (i.e. it has an eigenbasis)
- $A = PDP^{-1}$

Observe that

$$A = PDP^{-1} = I_{\mathcal{E}_n,\mathcal{B}}DI_{\mathcal{B},\mathcal{E}_n}$$

Where B is the eigenbasis → diagonalizing is a base change to the eigenbasis

Matrix Powers and Matrix Exponential

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Matrix power: diagonal matrices are

easy!

$$A^m = PD^m P^{-1}$$

Where
$$D^m = \begin{bmatrix} (\lambda_1)^m & & & \\ & \ddots & & \\ & & (\lambda_n)^m \end{bmatrix}$$

Matrix exponential:

$$e^{At} = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \dots$$

 $e^{At} = Pe^{Dt}P^{-1}$

Linear Differential Equations

$$\frac{d\mathbf{u}}{dt} = A\mathbf{u}$$

With initial condition:

$$\mathbf{u}(0) = \mathbf{v}$$

Let A be an $n \times n$ matrix and $\mathbf{v} \in \mathbb{R}^n$ The solution of the differential equation $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$ with initial condition $\mathbf{u}(0) = \mathbf{v}$ is $\mathbf{u}(t) = e^{At}\mathbf{v}$

If $v_1, v_2,...v_n$ is an eigenbasis of A:

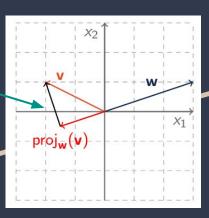
$$e^{At}\mathbf{v}=c_1e^{\lambda_1t}\mathbf{v}_1+\cdots+c_ne^{\lambda_nt}\mathbf{v}_n$$

Vector Projections

Projection of **v** onto **w**

$$\mathsf{proj}_{\mathbf{w}}(\mathbf{v}) := \frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$$

Error term



Projecting **v** onto **w** yields the vector in span(**w**) that is closest to **v**.

The **error term** is \mathbf{v} - $\operatorname{proj}_{\mathbf{w}}(\mathbf{v})$ and is in $\operatorname{span}(\mathbf{w})^{\perp}$

Can also use:

$$\operatorname{proj}_{\mathbf{w}}(\mathbf{v}) = \left(\frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} \mathbf{w}^{T}\right) \mathbf{v}$$

Where the boxed term is called the orthogonal projection matrix onto span(w)

Subspace Projections

Let W be a subspace of \mathbb{R}^n and $\mathbf{v} \in \mathbb{R}^n$. Then \mathbf{v} can be written uniquely as

$$\mathbf{v} = \hat{\mathbf{v}} + \mathbf{v}^{\perp}$$
 $\lim_{W \to 0} W + \lim_{W \to 0} W^{\perp}$

v is calculated by projecting **v** onto an orthogonal basis of W

 $P_{\rm W}$ is the orthogonal projection matrix for subspace W. Calculate $P_{\rm W}$ by projecting each column of the identity matrix onto W and join them all in a matrix

$$Q = I - P_W$$
, where I is the identity. Then $P_{W^{\perp}} = Q$

Least Squares Solutions:

Trying to minimize the distance between Ax and **b** for an inconsistent system

$$A\hat{\mathbf{x}} = \operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$$

LSQ solution

General algorithm:

$$A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$$

Find A^T and A^TA, then solve the above system with any method you prefer.

For linear regressions:

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$
 design matrix X $\hat{\mathbf{X}}$ observation vector \mathbf{y}

The shape of the design matrix depends on the problem!

You Try!

Given the following data points, Set up the least squares equation to solve for the coefficients to create a fit function of the form $y = \alpha x + \beta \ln(x) + \gamma \cos(x)$

Data Points:

(1, 2.576)

(2, -0.345)

(3, -2.393)

(4, 0.087)

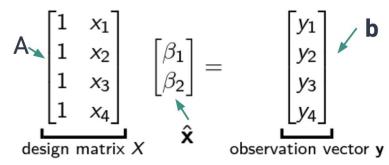
(5, 5.018)

Reminder:

General algorithm:

$$A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$$

For linear regressions:



Solution

Given the following data points, Set up the least squares equation to solve for the coefficients to create a fit function of the form $y = \alpha x + \beta \ln(x) + \gamma \cos(x)$

Data Points:

$$(2, -0.345)$$

$$(3, -2.393)$$

If there is no noise in the data, the following is a consistent system

$$A\vec{x} = \vec{b}$$

$$\begin{bmatrix} 1 & ln(1) & cos(1) \\ 2 & ln(2) & cos(2) \\ 3 & ln(3) & cos(3) \\ 4 & ln(4) & cos(4) \\ 5 & ln(5) & cos(5) \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 2.576 \\ -0.345 \\ -2.393 \\ 0.087 \\ 5.018 \end{bmatrix}$$

Solution

Given the following data points, Set up the least squares equation to solve for the coefficients to create a fit function of the form $y = \alpha x + \beta \ln(x) + \gamma \cos(x)$

The system is inconsistent, so we use the LSQ: $A^T A \hat{x} = A^T \vec{y}$

$$\begin{bmatrix} 1 & ln(1) & cos(1) \\ 2 & ln(2) & cos(2) \\ 3 & ln(3) & cos(3) \\ 4 & ln(4) & cos(4) \\ 5 & ln(5) & cos(5) \end{bmatrix}^T \begin{bmatrix} 1 & ln(1) & cos(1) \\ 2 & ln(2) & cos(2) \\ 3 & ln(3) & cos(3) \\ 4 & ln(4) & cos(4) \\ 5 & ln(5) & cos(5) \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 & ln(1) & cos(1) \\ 2 & ln(2) & cos(2) \\ 3 & ln(3) & cos(3) \\ 4 & ln(4) & cos(4) \\ 5 & ln(5) & cos(5) \end{bmatrix}^T \begin{bmatrix} 2.576 \\ -0.345 \\ -2.393 \\ 0.087 \\ 5.018 \end{bmatrix}$$

In-Person Resources

CARE Drop-in tutoring:

7 days a week on the 4th floor of Grainger Library! Sunday - Thursday 12pm-10pm Friday & Saturday 12-6pm

Course Office hours:

TAs: Mondays - Thursdays 5-7pm Mondays: Engineering 106B3

Tuesdays: Loomis 137

Wednesdays: Engineering 106B8 Thursdays: Engineering 106B8

Instructors:

Chuang: M 4-5PM in Harker 314D

Berwick-Evans: W 3-4PM in Harker 314D

Subject	\Rightarrow	Sunday 🕈	Monday 🕈	Tuesday 🕈	Wednesday 🕈	Thursday 🕈	Friday 🕈	Saturday 🕈
Math 257		2pm-9pm	12pm-4pm	12pm-10pm	12pm-2pm	12pm-2pm	1pm-6pm	2pm-4pm
			8pm-10pm		3pm-10pm	4pm-8pm		

Questions?

Join the queue to see the worksheet!

Important Definitions

Characteristic Polynomial: $p_A(\lambda) = det(A - \lambda I) = 0$

Eigenvectors/Eigenspaces: $\vec{v}_{\lambda} \in null(A - \lambda I) = Eig_{\lambda}(A)$

Linearity: $T(\alpha \vec{a} + \beta \vec{b}) = \alpha T(\vec{a}) + \beta T(\vec{b})$

Coordinate Inverse: $I_{AE} = I_{EA}^{-1}$

2x2 Determinant: $det(A_{2\times 2}) = ad - bc$

Diagonalization: $A = PDP^{-1}$ $P = [\vec{v_1} \cdots \vec{v_n}]$ $D = diag(\lambda_1 \cdots \lambda_n)$ Linear Differential Equation Solution: $\vec{u} = A\vec{u}$ $\vec{u}(0) = \vec{v}$ $\vec{u} = e^{At}\vec{v} = \sum_{i=1}^n c_i e^{\lambda_i t} v_i$

Linear Least Squares: $A^T A \hat{x} = A^T \vec{b} \Rightarrow \hat{x} = (A^T A)^{-1} A \vec{b}$

General Projections: $P = A(A^TA)^{-1}A^T$

1D Projections: $proj_{\vec{w}}(\vec{v}) = \frac{\vec{w} \cdot \vec{v}}{\vec{v} + \vec{v}} \vec{w}$

Determinant & Trace: $det(A) = \prod_{i=1}^{i} \lambda_{i}$ $tr(A) = \sum_{i=1}^{i} \lambda_{i}$