Math 231 Midterm 3 Review

A Section: Bahreini

Series

- Series: The sum of a sequence.
 - ▶ If a series converges, then the sequence must converge as well.
 - **However:** If sequence converges, then the series may or may not converge.
 - $ightharpoonup \Sigma a_n$ converges if the limit of the series converges.
- Geometric series:
 - $\sum ar^{k-1} = a + ar + ar^2 + ar^3 \dots$
 - ▶ Will converge if |r| < 1
- Other techniques:
 - ► Evaluate the partial sums (first bit of sums) of a series and see how the series behaves
- ▶ If Σ a_k converges, then $\lim_{x\to\infty} a_n = 0$

Integral Test

- ► Let an = f(n):
 - ▶ $\int f(x)dx$ (from k to infinity) converges if the series converges (Σa_k).

Must be:

- Continuous
- Positive
- Decreasing

1. If
$$\int_{k}^{\infty}f\left(x
ight) \,dx$$
 is convergent so is $\sum_{n=k}^{\infty}a_{n}$.

2. If
$$\int_{k}^{\infty}f\left(x
ight)\,dx$$
 is divergent so is $\sum_{n=k}^{\infty}a_{n}$.

- P-test:
 - ▶ The series \sum_{np}^{1} converges if p > 1 and diverges if p ≤ 1.

Comparison Tests

Direct Comparison Test:

- ▶ Let $0 \le an \le bn$.
 - ▶ If the series of bn converges, then the series of an does as well.
 - ▶ If the series of an diverges, then the series of bn does as well.

Limit Comparison Test:

- ▶ Let $0 \le an$, bn
 - ▶ If the limit of an/bn = C, and C is a nonzero, finite number (ie. not zero or infinity)
 - ▶ Then one of two things:
 - ▶ Both an and bn converge.
 - ▶ Both an and bn diverge.

Alternating Series Test

- What is an Alternating Series?
 - ▶ The series is changing signs with each subsequent term
 - $\triangleright \Sigma a_n (-1)^{n+1}$
- ► Alternating Series Test
 - With series Σa_n , $a_n = (-1)^n b_n$ OR $a_n = (-1)^{n+1} b_n$

 - \triangleright b_n is a decreasing sequence
 - ▶ The series Σa_n is convergent

Absolute Convergence

- Absolute Convergence:
 - ▶ If the absolute value of a series, then the series is absolutely convergent.
- Conditional Convergence:
 - ▶ If a series if convergent, but the absolute value of the series diverges, then the series is conditionally convergent.
- Negative signs can only help convergence!

Root Test

Theorem 2.1 (Root Test). Let a_n be a sequence and $\sum_{n=1}^{\infty} a_n$ be the associated series. Let us define

$$b_n = \sqrt[n]{|a_n|} = |a_n|^{1/n}$$
,

and assume that $\lim_{n\to\infty} b_n = L$. Then

- 1. if L < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely;
- 2. if L > 1, then $\sum_{n=1}^{\infty} a_n$ diverges;
- 3. if L = 1, then no information is obtained.

Ratio Test

Theorem 3.1. Let a_n be a sequence and $\sum_{n=1}^{\infty} a_n$ be the associated series. Let us assume that

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L.$$

Then

- 1. if L < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely;
- 2. if L > 1, then $\sum_{n=1}^{\infty} a_n$ diverges;
- 3. if L = 1, then no information is obtained.

Strategies

- Classify what kind of series you are working with
- Determine what kind of test to use

TEST	SERIES	CONVERGES IF	DIVERGES IF	COMMENTS
nth Term Test for Divergence	$\sum_{n=1}^{\infty} a_n$	n/a	$\lim_{n\to\infty}\neq 0$	should be first test used. Inconclusive if limit = 0.
Geometric Series Test	$\sum_{n=1}^{\infty} a_n r^{n-1}$	r < 1	$ r \ge 1$	use if there is a "common ratio" $S_n = \frac{a}{1-r}$
P-Series Test	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	<i>p</i> ≤ 1	harmonic series when p=1. Useful for comparison tests.
Integral Test	$\sum_{n=1}^{\infty} a_n$ $a_n = f(x)$	$\int_{1}^{\infty} f(x) dx$ converges	$\int_{1}^{\infty} f(x) dx$ diverges	f(x) must be continuous, positive, and decreasing
Direct Comparison Test	$\sum_{n=1}^{\infty} a_n$	$0 \leq a_n \leq b_n,$ $\sum_{n=1}^{\infty} b_n$ converges	$0 \leq b_n \leq a_n,$ $\sum_{n=1}^{\infty} b_n$ diverges	to show convergence, find a larger series. to show divergence, find a smaller series.
Limit Comparison Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n o\infty}rac{a_n}{b_n}>0,$ $\sum_{n=1}^\infty b_n$ converges	$\lim_{n\to\infty} \frac{a_n}{b_n} > 0,$ $\sum_{n=1}^{\infty} b_n$ diverges	apply l'hospital's rule if necessary; inconclusive if limit equals 0 or ∞
Alternating Series Test	$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$	$a_{n+1} \le a_n,$ $\lim_{n \to \infty} a_n = 0$	$\lim_{n\to\infty}a_n\neq 0$	must prove that the limit equals 0 and that terms are decreasing
Ratio Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right <1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1$	test fails if: $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right = 1$
Root Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$	$\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$	test fails if: $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1$

Power Series

Can be defined by the form:

$$\sum_{n=0}^{\infty} C_n x^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \cdots$$

- $ightharpoonup C_n$ are the coefficients
- Series is a function of x
- Can be centered at any number:

$$\sum_{n=0}^{\infty} C_n(x-a)^n = C_0 + C_1(x-a) + C_2(x-a)^2 + C_3(x-a)^3 + \cdots$$

Power Series

- Domain of Convergence: For what values will the series converge?
 - Use tests to find out what values of x satisfies convergence criteria.

Theorem 3.1. For any power series

$$\sum_{n=0}^{\infty} c_n (x-a)^n,$$

there are exactly three possibilities for the domain of convergence (DOC) and radius of convergence (ROC).

- 1. Converges only at x = a, or
 - $DOC = \{a\}, ROC = 0;$
- 2. Converges for all x, or DOC = $(-\infty, \infty)$), ROC = ∞ ;
- 3. There is an R such that the power series converges for |x a| < R and diverges for |x a| > R, ROC = R.

Remark 3.2. In the case with a radius of convergence R with $0 < R < \infty$, we have to check the endpoints "by hand".