1. For each of the functions below, determine the long-term behavior of the function.

a.
$$-(5-x)(20x+4)$$

$$f(x) = -(5 - x)(20x + 4) = 20x^2 - 96x - 20$$
. Leading term $20x^2 - > + \infty$ as $x - > \pm \infty$

b.
$$8x^3 - 2x^2 + 3x + 15$$

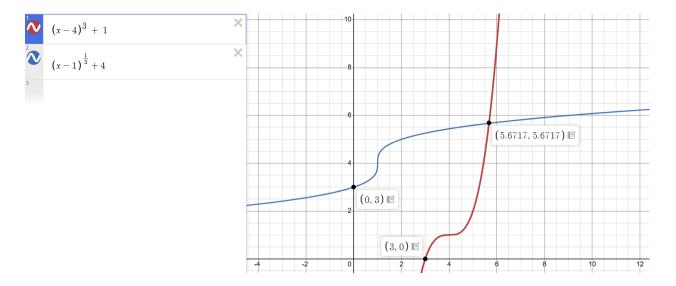
$$f(x) = 8x^3 - 2x^2 + 3x + 15$$
. Leading term $8x^3$ (odd,positive)
 $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to -\infty} f(x) = -\infty$

c.
$$-x^4 - 7x^3 - 7x^2 + 43x + 43$$

Leading term: -x^4 (even, negative)
$$\lim_{x \to \infty} f(x) = -\infty$$
, $\lim_{x \to -\infty} f(x) = -\infty$

2. Use transformations to sketch the graph of $g(x) = (x - 4)^3 + 1$. Then sketch the graph of its inverse.

Inverse: $g^{-1}(x) = \sqrt[3]{x-1} + 4$



MATH 115 Exam 2 Review

3. Determine whether each statement below is true or false. If false, correct the statement.

a.
$$log(100^x) = x$$

False,
$$log_{10}(10^x) = x$$

b.
$$ln(e^x) = x$$

True

4. Solve for x in the logarithmic equations.

a.
$$log_{8}(4x + 1) = -1$$

$$4x + 1 = 8^{-1} = 1/8 \Rightarrow 4x = -7/8 \Rightarrow x = -7/32.$$

b.
$$4ln(2x - 1) + 3 = 11$$

$$4 \ln(2x-1) = 8 \Rightarrow \ln(2x-1) = 2 \Rightarrow 2x-1 = e^2 \Rightarrow x = (1+e^2)/2$$

c.
$$log_3(x^2 + 6x) = 3$$

 $x^2 + 6x = 27 \Rightarrow x^2 + 6x - 27 = 0 \Rightarrow (x - 3)(x + 9) = 0 \Rightarrow x = 3 \text{ or } x = -9.$ Check domain: both give positive arguments(27), so both are valid.

- 5. Consider the polynomial $f(x) = x^3 6x^2 + 3x + 10$.
 - a. Write f(x) in factored form by using the Rational Roots Theorem and polynomial long division. Hint: the first step is listing possible rational roots.

Try x = 2 gives $8 - 24 + 6 + 10 = 0 \Rightarrow x = 2$ is a root. Divide by $(x - 2) \Rightarrow$ quotient $x^2 - 4x - 5 \Rightarrow$ factor (x - 5)(x + 1). So f(x) = (x - 2)(x - 5)(x + 1).

MATH 115 Exam 2 Review

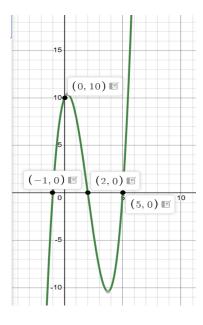
b. Determine the x and y intercepts of f(x).

x-intercepts: x = 2, 5, -1. y-intercept: f(0) = 10

c. What is the relationship between the zeros of a polynomial and its factored form?

The zeros of a polynomial are the solutions r where (x - r) is a factor; the factored form lists these factors.

d. Using your solutions above, draw a rough sketch of f(x). Label all intercepts.



6. Suppose $\log_b a = 4$, $\log_b c = 1$, $\log_b d = 2$ Determine the exact value of the following expression.

$$log_b(\frac{a^3d^2}{c^5})$$

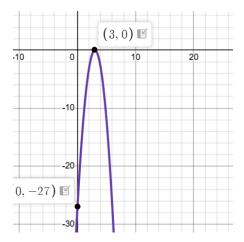
MATH 115

$$log_b(a^3d^2/c^5) = 3 log_b(a) + 2 log_b(d) - 5 log_b(c) = 3(4) + 2(2) - 5(1) = 12 + 4 - 5 = 11.$$

7. For each of the following polynomials, determine the long term behavior, intercepts, and where the polynomial is positive and negative. Use this to sketch the graph. Label all intercepts

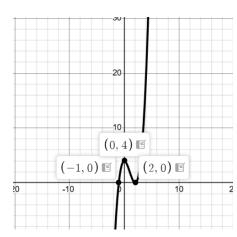
a.
$$(3-x)(3x-9)$$

 $(3-x)(3x-9) = (3-x)\cdot 3(x-3) = 3(3-x)(x-3) = -3(x-3)^2$. So polynomials = $-3(x-3)^2$ (a nonpositive parabola with double root at x=3). Long-term: leading term negative even $\Rightarrow -\infty$ b Intercept: x = 3 (double), y-intercept: plug x=0 \Rightarrow (3)(-9)= -27.



b.
$$(2-x)^2(x+1)$$

Roots: x = 2, x = -1. Leading behavior: $-(x)^2 \cdot x \sim x^3$ with coefficient $(-1)^2 \cdot 1 = +1 \Rightarrow$ positive leading, so as $x \to \infty \to \infty$ and as $x \to -\infty \to -\infty$. Sign chart: use multiplicities: at x=2 does not change sign; at x=-1 (odd) sign changes.



MATH 115

8. Suppose $f(x) = \frac{3}{2-x}$. What is the range f^{-1} ?

Solve $y = \frac{3}{2-x} \Rightarrow$ swap: $x = \frac{3}{2-y} \Rightarrow (2-y) = \frac{3}{x} \Rightarrow y = 2 - \frac{3}{x}$. So $f^{\{-1\}}(x) = 2 - \frac{3}{x}$. Domain of f is $x \neq 2$; range of f is $y \neq 0$ (since 3/(2-x) cannot be 0). Therefore the range of $f^{\{-1\}}$ is all reals except 2.

9. Determine the following limits

a.
$$\lim_{x \to 2^{+}} \frac{5}{2-x}$$

 ∞

b.
$$\lim_{x \to \infty} \log_3(5 + x)$$

 ∞

c.
$$\lim_{x \to -5} \frac{3}{x+5}$$

D.N.E

d.
$$\lim_{x \to \infty} 250x$$

 ∞

e.
$$\lim_{x \to -\infty} (-2 + 3x - 6x^2)$$

-00