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Arc Length

b
Area = _.. f(x)dx




Arc Length

ds? = dx? + dy?

ds = Vdx? + dy?
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When to use which formula... and \

how to go about each one

b —_—
L=f\/1+(j—z)2dx > asx<b y=x

b
L=f\/1+(j—;)2dy >y a<y<b xzﬁ
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foz\/1+(2x)2dx=f04 1+ (—=)2dy
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General steps for solving arc length
problems:

1. Write down formula that makes the
mMost sense based on what you are
given in the problem
Find the derivative
Set up the integrand and solve
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Surface Area of a Revolution \

2TTr

A =29Tr x h




Surface Area of Revolution

We apply the same knowledge
to more complex shapes, the arc
length will be the ‘h" and then
the given function will be your
circumference.
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Surface Area of Revolution \

S = J 27Ty ds —— Around Xx-axis

S = fZT[X ds | — Around y-axis

b dy
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ds fa \/1 + (dx) dx

b
\ as = | JH(Z—;)Zdy




Visualizing what is going on \

(X, ¥)

circumference = 27X
>
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Center of mass:

Moments about axis;

Center of mass
coordinates:

N

M
X=—
m
_ M,
y_m

AN 3
y-axis
10
8
6
oB. 4D
4
2
~ x-axis E
* 0 | B 2 [0 12| 4 10
2 oA
-4
.C -6




BN

8.3 uniform density \

1 b
= Zj xf(x)dx

=

1 71
y = ZJ E(f(x))zdx

a

If the region R lies between two curves y = f(x) and y = g (x), where f(x) > g (x),
the centroid of R is (X,y), where

b b
~ 2| e -gwiax  5=2 [ R - lg@Pax
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sSequences

Sequence: Just a list of the numbers
- Pattern Recognition!

- To test whether convergent or divergent take the
limit, if the limit exists: convergent, if not! It is
divergent.

- If the sequence is a function, take the limit of the
function

- If cannot take limit, Squeeze Theorem!




Root Test

Theorem 2.1 (Root Test). Let a,, be a sequence and ) 7 | a,, be the associated series. Let us define

n 1
bp = V |a'n| = |an| /m ;

and assume that lim,,_,~. b, = L. Then

”
1. if L < 1, then Z an converges absolutely;

n=1

o
2. if L > 1, then Z an diverges;

n=1

3. if L = 1, then no information is obtained.



Ratio Test

Theorem 3.1. Let a,, be a sequence and fo:l an be the associated series. Let us assume that

an+1
an

= L.

lim
n—oc

Then

fo'e)
1. if L < 1, then Z an converges absolutely;

n=1

oo
2. if L > 1, then Z an diverges;

n=1

3. if L = 1, then no information is obtained.



Usetul Squeeze Theorem

> lim (2 = 0 > lim () = a
X— 00 x—0

» lim (22 = 1 > lim (<2201 = 0
x—0 X x—0

If f(z) <h(z)<g(z)

and
lim f (z) = lim g (z) = L
then

limh (z) = L
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sSequences

Convergence and Divergence.

Some sequences never stop increasing, while others eventually

seftle at a particular number.
u" u u"
L e
n n n

If the numbers in a sequence continue to get further and further
apart, the sequence diverges.

n

If a sequence tends towards a limit, it is described as convergent.
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Sequence Convergence

» Convergence:
» Increasing
» ifalla, <a,4q
» Decreasing
» ifalla, >a,.q
» Bounded from Below
» If there existed a number m such that m < a,,;,
» Bounded from Above
» If there existed a number M such that M > a,,,

» If a sequence is bounded (from above and below) and monotonic (increasing or
decreasing only), then it is convergent

» If is not both of these, does not necessarily mean it is divergent



Series

» Series: The sum of a sequence.
» If a series converges, then the sequence must converge as well.
» However: If sequence converges, then the series may or may not converge.
» Xa, converges if the limit of the series converges.
» Geometricseries:
» Tar¥l=a+ar+ar?+ard...
» Will converge if |r| < 1
» Other techniques:

» Evaluate the partial sums (first bit of sums) of a series and see how the series
behaves

» If 2a; converges, then lima, =0
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Strategies

1. Check divergence

2. Look for easy
P-Test/Geometric

3. Inspection

TEST SERIES CONVERGES IF... DIVERGES IF... COMMENTS
nth Term = should be first test
Test for Z an n/a lim #0 used. Inconclusive if
Divergence n=1 o limit = 0.
= use if there is a
Geometric Z I Irl<1 [rl =1 “common ratio”
Series Test | n=1 S, = L
1=r
g harmonic series when
P-Series Test Z = pr>1 p=<1 p=1. Useful for
n=1 comparison tests.
= f(x) must be
Integral Test ; a, f1°° f(x)dx flm.f(x) dx ;ﬁztgz:::::,sﬁc;sitive,
a, = (%) converges diverges
0< a, < b, 0< b, < a,
Direct 2 > = to show convergence,
Comparison Z an Z by Z b, find a larger series.
Test n=1 n=1 n=1 to show divergence,
COnverges diverges find a smaller series.
o & lima—">0, lim&>0, .
Limit ""“’w n "*wfn apply I'hospital’s rule
Comparison Z an if necessary;
Test n=1 Z by Z by inconclusive if limit
= =" equals 0 or oo
converges diverges
Alternating = Apiq < Ay, must prove that the
Series Test Z(—l)nﬂa lima, =0 lima, #0 limit equals 0 and that
n=1 e " terms are decreasing
= Gni1 Anii test fails if :
RatieTest Z % lim %, | <1 | lim [T > 1 lim |a"*1 =1
n=1 n-oo a,n
= test fails if:
Root Test an

lim \/|a,| <1
n—-oo

tim Ylen] =1




