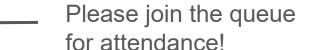
Exam 2 Review Session Math 231E



Outline

- 1. Please join the queue
- 2. Mini review of some topics covered

3. Practice! → CARE Worksheet, Practice Exams

- - a. Please raise hands for questions rather than put them in the queue

Need extra help? → 4th Floor Grainger Library

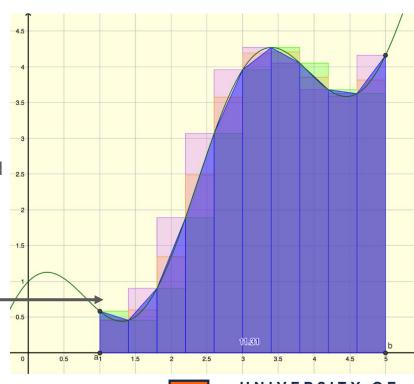
Trees out a morph than the or crampor morally							
Subject 🔷	Sunday 🔷	Monday 🔷	Tuesday 🔷	Wednesday 🔷	Thursday 🔷	Friday 🔷	Saturday 🔷
Math 231 (E)	4pm-10pm	1pm-5pm 8pm-10pm		1pm-5pm 8pm-10pm	6pm-8pm		2pm-4pm

Content Review

Riemann Sums

- Approximation for the area under a curve
- General form: $\sum_{x=a}^{b} f(x_k^*) \Delta x$
 - $\Delta x = \frac{(b-a)}{n}$ \rightarrow difference of the two values divided by the number partitions
 - $x_k^* = a + n\Delta x$ the leftmost value plus the difference times the number partition you are on
- Types
 - Left endpoint
 - Right endpoint
 - Midpoint

Trapezoidal



Integrals and the Fundamental Theorem of Calculus

- What exactly is an integral? → Riemann sum where each "rectangle" has an infinitely small width

$$\lim_{n \to \infty} \sum_{x=a}^{b} f(x_k^*) \Delta x = \int_{a}^{b} f(x) dx$$

- Representations: area under a curve, accumulation of change

- Fundamental Theorem of Calculus: $\int_a^b f'(x)dx = f(b) f(a)$
 - An integral "undoes" differentiation → the resulting function from integrating is an antiderivative

Known Antiderivatives

- For some common functions the antiderivative is straightforward:

$$1/x: \int \frac{1}{x} dx = \ln(x) + C \qquad \qquad Cos(x): \int \cos(x) dx = \sin(x) + C$$

Is the function I'm integrating a known derivative of another function?

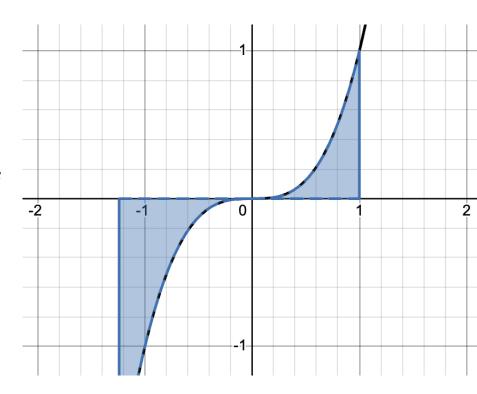
Integral Properties

$$1. \int Cf(x)dx = C \int f(x)$$

1.
$$\int f(x) + g(x)dx = \int f(x)dx + \int g(x)dx$$

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$



Methods for Evaluating More Complicated Integrals

U-Substitution

If you notice one part of the integrand is the derivative of another part ...

$$\int f(g(x)) \cdot g'(x) dx = \int f(u) du$$
$$u = g(x)$$
$$du = g'(x) dx$$

...you can substitute a new variable "u" and take its derivative to plug back into the integral

Example:
$$\int \frac{x}{\sqrt{1-x^2}} dx \qquad u = 1-x^2 \\ du = -2x \qquad \longrightarrow \qquad \int \frac{-1}{2\sqrt{u}} du$$

Remember to put your answer back in terms of x

UNIVERSITY OF ILLINOIS

Integration by Parts

If you notice that two functions that are not derivatives of each other are

multiplied together ...

$$\int udv = uv - \int vdu$$

...you can decompose the integrand such where ...

$$u = f(x)$$

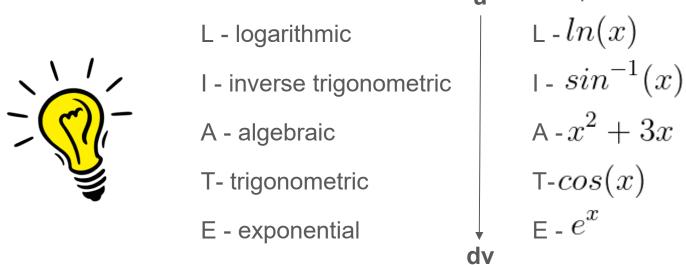
$$v = \int g(x)dx$$

$$du = f'(x)$$

$$dv = g(x)$$

You may need to do multiple integration by parts to fully work through the integral!

Integration by Parts → LIATE Method



Examples

You may need to do multiple integration by parts to fully work through the integral!

Partial Fractions

- If you have a rational function with a polynomial in the denominator ...

Rational Function	Partial Fraction
$\frac{px+q}{(x-a)(x-b)}, a \neq b$	$\frac{A}{(x-a)} + \frac{B}{(x-b)}$
$\frac{px+q}{(x-a)^2}$	$\frac{A}{(x-a)} + \frac{B}{(x-a)^2}$
$\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)}$	$\frac{A}{(x-a)} + \frac{B}{(x-b)} + \frac{C}{(x-c)}$
$\frac{px^2 + qx + r}{(x-a)^2(x-b)}$	$\frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-b)}$
$\frac{px^2 + qx + r}{(x-a)(x^2 - bx - c)}$	$\frac{A}{(x-a)} + \frac{Bx + C}{(x^2 - bx - c)}$

... from the original numerator you can solve for the A,B,C, etc.

Trigonometric Integrals

- If you have an integrand with trig functions, you can use known trig identities to simplify the integral and use another method if needed

$$cos^{2}(x) + sin^{2}(x) = 1$$

$$tan^{2}(x) + 1 = sec^{2}(x)$$

$$tan^{2}(x) = sec^{2}(x) - 1$$

$$sin(2x) = 2 sin(x) cos(x)$$

$$sin^{2}x = \frac{1}{2}(1 - cos(2x))$$

$$cos^{2}x = \frac{1}{2}(1 + cos(2x))$$

$$cos(2x) = cos^{2}(x) - sin^{2}(x)$$

$$= 1 - 2sin^{2}(x)$$

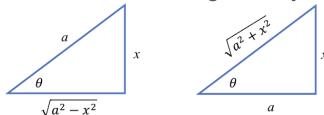
$$= 2cos^{2}(x) - 1$$

Trigonometric Substitution

- If you notice a complicated function inside of a square root ...

Format	Substitution	Derivative Substitution	Trig Identity
$\sqrt{a^2-x^2}$	$x = a * \sin(\theta)$	$dx = a * \cos(\theta) d\theta$	$\cos^2(\theta) + \sin^2(\theta) = 1$
$\sqrt{a^2 + x^2}$	$x = a * tan(\theta)$	$dx = a * sec^2(\theta) d\theta$	$tan^2(\theta) + 1 = sec^2(\theta)$
$\sqrt{x^2-a^2}$	$x = a * sec(\theta)$	$dx = a * \sec(\theta) \tan(\theta) d\theta$	$tan^2(\theta) = sec^2(\theta) - 1$

... you can substitute a known trig identity and solve the integral...



... and can convert back using a triangle

What method would you use?

$$\int \frac{1}{\sqrt{16 + x^2}} dx$$
$$\int \sin(x)e^x dx$$

$$\int \sin(x)e^x dx$$

$$\int \cos^3(x)\sin^2(x)dx$$

$$\int \frac{3x+11}{(x-3)(x+2)} dx$$

$$\int ln(x)dx$$

$$\int (2x+2)e^{x^2+2x+3}dx$$

5.
$$\int sec(x)dx$$
$$\int cos(2x)dx$$

1. Trig substitution

5. Integration by parts

1. Integration by parts

5. U-substitution

1. Trigonometric integrals

5. Integration by parts with u-sub (or known antiderivative)

1. Partial fractions

5. U-substitution (or known antiderivative)

Good luck on your exam!

You can use the rest of the time to practice

