Numpy guide

Documentation and helpful links:

https://numpy.org/doc/stable/user/absolute beginners.html

https://www.w3schools.com/python/numpy/default.asp

```
1 #first, import numpy
2 import numpy as np
```

Creating and reading arrays

An array is a structure for storing and retrieving data. We often talk about an array as if it were a grid in space, with each cell storing one element of the data.

```
1 = np.array([[1, 2, 3],
                  [4, 5, 6]])
  4 shape = a.shape # tells the dimensions of the array
  5 size = a.size # tells how many terms are in the array
  6 index1 = a[0] # arrays can be treated like lists! we can index them!
  7 \text{ index2} = a[0][0]
  8
  9 print(f"Our array is defined as {a} \n")
 10 print(f"The shape of our array is {shape},\nwhere the first number refers to the number of rows and \nthe second to the number of
 11 print(f"We can index a whole row using only one square bracket: {index1}")
 12 print(f"To index a specific value in a row and column, we must use two square brackets: {index2}")
Our array is defined as [[1 2 3]
[4 5 6]]
The shape of our array is (2, 3),
where the first number refers to the number of rows and
the second to the number of columns.
We can index a whole row using only one square bracket: [1 2 3]
To index a specific value in a row and column, we must use two square brackets: 1
```

```
1 b = np.array([20,30,40,50, 60, 70])
2
3 print(f"My original b array defined in line 1: {b}")
4 b[-1] = 10
5
6 print(f"Similarly to lists, arrays are mutable, as shown in line 4: {b}. \nThey can also be sliced: {b[:3]}")

My original b array defined in line 1: [20 30 40 50 60 70]
Similarly to lists, arrays are mutable, as shown in line 4: [20 30 40 50 60 10].
They can also be sliced: [20 30 40]
```

Let's create a basic array:

```
1 # each number states how many elements you want in your array
2
3 only_zeros = np.zeros(5)
4 only_ones = np.ones(4)
5 empty = np.empty(3) # this creates an array whose intial content is random
6
7 range = np.arange(7) # this gives a range of elements
8 range2 = np.arange(3,15,3) # arange works similarly to lists
9 print(f"This is how we print arrays based on first number, \nlast number, and step size: {range2}\n")
10
11 linear = np.linspace(0,10, 5) # values spaced linearly in a specified interval: start, end, number of values inbetween
12 print(f"This is how we another way to create arrays with values \nspaced linearly: {linear}")
13
This is how we print arrays based on first number,
last number, and step size: [ 3 6 9 12]
```

```
This is how we another way to create arrays with values spaced linearly: [ 0. 2.5 5. 7.5 10. ]
```

```
1 # you can also sort arrays
2 arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])
3 np.sort(arr)
array([1, 2, 3, 4, 5, 6, 7, 8])
```

```
1 # what about concatenation?
2
3 a = np.array([1, 2, 3, 4])
4 b = np.array([5, 6, 7, 8])
5
6 np.concatenate((a, b))
array([1, 2, 3, 4, 5, 6, 7, 8])
```

Other array opperations:

```
1 data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80])
2
3 print(f"The maximum in this array is {data.max()}.")
4
5 print(f"The minimum in this array is {data.min()}.")
6
7 print(f"The sum of this array is {data.sum()}.")
8
9 print(f"The average of this array is {data.mean()}.")
10
11 print(f"The product of this array is {data.prod()}.")

The maximum in this array is 80.
The minimum in this array is 396.
The average of this array is 24.75.
The product of this array is 162570240000000000.
```

```
1 list = [1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80]
2
3 print(list)
4
5 array = np.array(list)
6
7 print(array)

[1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80]
[1 2 3 4 5 6 7 8 10 20 30 40 50 60 70 80]
```

Application for Linear algebra

```
1 data = np.arange(12)
2
3 matrix = data.reshape(4,3) # row, column
4
5 print(data)
6 print(f"The original matrix is \n{matrix}")
7 print(f"The transposed matrix is \n{matrix.transpose()}")

[ 0 1 2 3 4 5 6 7 8 9 10 11]
The original matrix is
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]
The transposed matrix is
[[ 0 3 6 9]
[ 1 4 7 10]
[ 2 5 8 11]
```

1