10/15/25, 7:02 PM Numpy guide - CARE CS 101 - Colab

v Numpy guide

Documentation and helpful links:

https://numpy.org/doc/stable/user/absolute_beginners.html

https://www.w3schools.com/python/numpy/default.asp

1 #first, import numpy
2 import numpy as np

v Creating and reading arrays

An array is a structure for storing and retrieving data. We often talk about an array as if it were a grid in space, with each cell storing one
element of the data.

a = np.array([[1, 2, 3],
[4, 5, 6]])

1
2
3
4 shape = a.shape # tells the dimensions of the array

5 size = a.size # tells how many terms are in the array

6 indexl = a[@] # arrays can be treated like lists! we can index them!
7 index2 = a[0][@]

8
9

print(f"Our array is defined as {a} \n")

print(f"The shape of our array is {shape},\nwhere the first number refers to the number of rows and \nthe second to the number o
11 print(f"We can index a whole row using only one square bracket: {index1}")

12 print(f"To index a specific value in a row and column, we must use two square brackets: {index2}")

=
®

Our array is defined as [[1 2 3]
[4 5 6]]

The shape of our array is (2, 3),

where the first number refers to the number of rows and

the second to the number of columns.

We can index a whole row using only one square bracket: [1 2 3]

To index a specific value in a row and column, we must use two square brackets: 1

1b = np.array([20,30,40,50, 60, 70])

2

3 print(f"My original b array defined in line 1: {b}")
4b[-1] = 10

5

6 print(f"Similarly to lists, arrays are mutable, as shown in line 4: {b}. \nThey can also be sliced: {b[:3]}")

My original b array defined in line 1: [20 30 40 50 60 70]
Similarly to lists, arrays are mutable, as shown in line 4: [20 30 40 50 60 10].
They can also be sliced: [20 30 40]

Let's create a basic array:

each number states how many elements you want in your array

1
2
3 only_zeros = np.zeros(5)

4 only_ones = np.ones(4)

5 empty = np.empty(3) # this creates an array whose intial content is random
6

7

8

9

range = np.arange(7) # this gives a range of elements
range2 = np.arange(3,15,3) # arange works similarly to lists
print(f"This is how we print arrays based on first number, \nlast number, and step size: {range2}\n")

11 linear = np.linspace(©,10, 5) # values spaced linearly in a specified interval: start, end, number of values inbetween
12 print(f"This is how we another way to create arrays with values \nspaced linearly: {linear}")

This is how we print arrays based on first number,
last number, and step size: [3 6 9 12]

https://colab.research.google.com/drive/1ZBo5FLRmMF2kKIx_zGUZtLiIRXvtfkedmWiscrollTo=vi9jhjuGSqZQ&printMode=true 1/3

10/15/25, 7:02 PM

This

Numpy guide - CARE CS 101 - Colab

is how we another way to create arrays with values

spaced linearly: [@. 2.5 5. 7.5 10.]

1
2
3

you can also sort arrays
arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])
np.sort(arr)

array([1, 2, 3, 4, 5, 6, 7, 8])

1
2
3
4
5
6

what about concatenation?

a = np.array([1, 2, 3, 4])
b = np.array([5, 6, 7, 8])

np.concatenate((a, b))

array([1, 2, 3, 4, 5, 6, 7, 8])

Other array opperations:

The
The
The
The
The

1
2
3
4
5
6
7

[1,
[1

data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80])
print(f"The maximum in this array is {data.max()}.")

print(f"The minimum in this array is {data.min()}.")

print(f"The sum of this array is {data.sum()}.")

print(f"The average of this array is {data.mean()}.")

print(f"The product of this array is {data.prod()}.")

maximum in this array is 80.

minimum in this array is 1.

sum of this array is 396.

average of this array is 24.75.
product of this array is 162570240000000000.

list = [1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80]
print(list)

array = np.array(list)

print(array)

2, 3,4,5,6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80]
2 3 4 5 6 7 810 20 30 40 50 60 70 80]

v Application for Linear algebra

1 data = np.arange(12)
2
3 matrix = data.reshape(4,3) # row, column
a4
5 print(data)
6 print(f"The original matrix is \n{matrix}")
7 print(f"The transposed matrix is \n{matrix.transpose()}")
[e 1 2 3 4 5 6 7 8 9 10 11]
The original matrix is
[[e 1 2]
[3 4 5]
[6 7 8]
[910 11]]
The transposed matrix is
[[le 3 6 9]
[1 4 7 10]
[2 5 811]]
1

https://colab.research.google.com/drive/1ZBo5FLRmMF2kKIx_zGUZtLiIRXvtfkedmW#scrollTo=vi9jhjuGSqZQ&printMode=true

2/3

10/15/25, 7:02 PM Numpy guide - CARE CS 101 - Colab

https://colab.research.google.com/drive/1ZBo5FLRmMF2kKIx_zGUZtLiIRXvtfkedmWiscrollTo=vi9jhjuGSqZQ&printMode=true 3/3

