Physics 212 Exam 1 Review

Thank you for coming, please sign into the queue

Exam 1 Topics

- 1. Coulomb's Law
- 2. Electric Field
- 3. Gauss' Law
- 4. Electric Potential
- 5. Capacitors

Coulomb's Law

Electrostatic Force (2 Charges)

$$\vec{F}_{12} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

Electric Charge

$$\vec{F}_{++} \longleftarrow \vec{F}_{++}$$

Superposition

When considering multiple charges, break the system into x- and y- components

$$\vec{F}_{1,Net} = \vec{F}_{21} + \vec{F}_{31}$$

Superposition Principle

$$\vec{F}_{Net} = \sum_{i} \vec{F}_{i}$$

Sources of Electric Fields

Point Charge

 $E = k \frac{q}{r^2}$

$$E \propto 1/r^2$$

$$Q = [C]$$

Line Charge

E 0 1/r

 $\lambda = [Coulombs/Meter]$

$$E = 2k\frac{\lambda}{r}$$

Sheet Charge

Electric field has NO distance

dependance

 $\sigma = [Coulombs/Meter^2]$

$$E = \frac{\sigma}{2\varepsilon_o}$$

Electric Flux

Amount of electric field that is perpendicular to a surface

- + Flux (Φ) = Outward Flux
- Flux (Φ) = Inward Flux

Gauss' Law

Use a Gaussian surface simplify

 $\oint E \cdot dA \rightarrow E * A$

E = electric field

A = surface area of gaussian surface

$$\Phi_{\text{Net}} = \oint_{\text{Surface}} \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\mathcal{E}_o}$$

Gaussian Surfaces

For point charge/sphere charge, use a **SPHERE**

For a line/cylinder charge, use a **CYLINDER**

$$\Phi_{Net} = \oint_{Surface} \vec{E} \cdot d\vec{A} = \frac{q_{enclosed}}{\mathcal{E}_o}$$

Conductors

Charges arrange themselves so that the electric field is always zero

Inside:
$$Q_{inside} = -1 * Q_{enc}$$

Insulators

Electric Field inside due to a Q_{enc} for enclosed volume

$$Q_{enc} = Q_{insulator}^* (V_{enc}/V_{insulator})$$

Potential Energy

Consider all charge-charge interactions

Charges ∞ have no potential energy

To increase the increase of the U takes

positive W_{on}

$$U_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{\eta_2}$$

Electric Potential (V)

$$\Delta V_{A \to B} = -\int_{A}^{B} \vec{E} \cdot d\vec{l}$$

Moving with or against electric field lines will change your V

Lines with same voltage are equipotential lines and are perpendicular to electric field lines

Voltage can be thought of as height, E field as slope, and a charge as a ball

Capacitance

$$U = \frac{1}{2}CV^2$$

$$C = \frac{\kappa \epsilon_0 A}{d}$$

Capacitance can be calculated simply by a capacitors dimensions

Describes relationship between charges on plates and voltage between plates

Dielectric in a Capacitor

Split the capacitor into two and add them up in series or parallel.

*Don't forget to divide the length

or Area by two!

Series and Parallel (Capacitors)

$$Q_1 = Q_2 = Q_{12}$$

$$1/C_{12} = 1/C_1 + 1/C_2$$

Shares Charge

$$V_1 = V_2 = V_{12}$$

$$C_{12} = C_1 + C_2$$

Share Voltage

Practice Problems

How much work is needed to put a positive charge on the "X"?

- a. W = negative
- b. W = positive
- c. W = 0
- d. It depends

In a constant E - field of 3[N/C] you travel from A to B. What is the ΔV ?

- a. 12 Volts
- b. -15 Volts
- c. 15 Volts
- d. -12 Volts

Thank You!

Sign into the queue to access the worksheet, solutions will be posted later!