Exam 1 Review Session Math 231E

Outline

- Please join the queue -
- 2. Mini review of some topics covered
- - a. Please raise hands for questions rather than put them in the queue

Need extra help? → **4th Floor Grainger Library**

Subject	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Math 231 (E)	12pm-2pm	2pm-4pm	8pm-10pm	3pm-7pm			2pm-6pm
	6pm-8pm	6pm-8pm					

Content Review

Complex Numbers

- Numbers of the form: z = x + yi
- Modulus: $|z| = \sqrt{x^2 + y^2}$
- Operations:
 - Addition: $z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i$
 - Multiplication: $z_1z_2=(x_1x_2-y_1y_2)+(x_1y_2+x_2y_1)i$ (think of FOIL)

- Division:
$$\frac{z_1}{z_2} = \frac{z_1 \bar{z_2}}{|z_2|} = \frac{(x_1 + y_1 i)(x_2 - y_2 i)}{x_2^2 + y_2^2}$$

- Euler's Theorem: $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

Taylor Series

- Taylor series help approximate complicated functions into polynomials that are easier to evaluate

$$f(a)+f'(a)(x-a)+f''(a)\frac{(x-a)^2}{2!}+f'''(a)\frac{(x-a)^3}{3!}+...+f^{(n)}(a)\frac{(x-a)^n}{n!}$$

- a is the value our Taylor series is evaluated at
 - Maclaurin series → a = 0

- Big O Notation: indicates which term of the Taylor series is being "cut-off"
 - If we evaluate around a certain value, then any term put into the Big O Notation is insignificant to the polynomial overall

Common Functions to Use Taylor Series

<u>Function</u>	<u>Taylor Series</u>
e^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$
$\cos(x)$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \dots + \frac{x^{2n}}{(2n)!}$
$\sin(x)$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots + \frac{x^{2n+1}}{(2n+1)!}$
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots + x^n$
ln(1+x)	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{(n+1)} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^n \frac{x^{n+1}}{(n+1)}$

Uses and Applications of Taylor Series

- 1) Deriving other Taylor Series from the most common
 - a) Substitution
 - b) Derivatives
 - c) Integrals

2) Evaluating limits with Taylor Polynomials versus the initial functions

3) Determining convergence or divergence of integrals and series → later in the course

Limits

 As we approach closer and closer to some value "a" from both the left and right hand side, the function gets closer and closer to "L":

$$\lim_{x \to a} f(x) = L$$

- Epsilon-delta definition: For any $\epsilon > 0$, there is a $\delta > 0$ such that if $0 < |x a| < \delta$, then $|f(x) L| < \epsilon$.
 - a → "target input"
 - Delta → "allowable deviation from the target input"
 - Epsilon → "output tolerance"
 - L → "target output value"
- Infinite Limits: $\lim_{x \to \infty} f(x) = \lim_{x \to 0^+} f(\frac{1}{x})$

Limit Laws

Operations

- Addition:
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

- Subtraction:
$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

- Multiplication:
$$\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
 - Power: $\lim_{x \to a} x^n = a^n$

$$- \quad \text{Division:} \lim_{x \to a} (\frac{f(x)}{g(x)}) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ (given the limit of the denominator is not 0)} \quad - \quad \text{Root:} \ \lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$

- Scaling by a constant:
$$\lim_{x \to a} (cf(x) = c \lim_{x \to a} f(x))$$

Exponentiating: $\lim_{x \to a} (f(x)^n) = (\lim_{x \to a} f(x))^n$

Functions

- Constant: $\lim c = c$
- Linear: $\lim x = a$

These laws can be combined to make finding limits easier!

Squeeze Theorem

- We have three functions such that near x: $f(x) \le g(x) \le h(x)$

- If
$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$
, then $\lim_{x \to a} g(x) = L$

- Great to use for functions that are hard to evaluate with limit laws

Derivatives

- Interpretation: the derivative of a function f(x) at a represents the instantaneous rate of change at a
 - Slope of tangent line at $a: y_a = f'(a)(x-a) + f(a)$
- Power Rule: $\frac{d}{dx}x^n = nx^{n-1}$
- Product Rule: $\frac{\mathrm{d}}{\mathrm{d}x}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$
- Quotient Rule: $\frac{\mathrm{d}}{\mathrm{d}x}(\frac{f(x)}{g(x)}) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$

Continuity, Discontinuities, and Intermediate Value Theorem

Intermediate Value Theorem: If a function f(x) is continuous on a closed interval [a,b] where f(a) and f(b) are different, there is a value z between f(a) and f(b) with some value c such that a < c < b and f(c) = z

Mean Value Theorem

If:

- 1. f(x) is continuous [a,b]
- 2. f(x) is differentiable (a,b)

Then:

There is a number c such that a<c<b and

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(b) - f(a) = f'(c)(b - a)$$

Minima and Maxima

 Absolute minima/maxima: smallest/largest outputs a function can produce on an interval

Local minima/maxima: smallest/largest outputs of a function around a certain

point

- Extreme Value Theorem: If **f(x)** is continuous on [a,b], then f achieves both an absolute maximum and absolute minimum on [a,b]
- Fermat's Theorem: If f(x) has a **local minimum/maximum at** c **and** f **exists** at c, then f'(c) = 0
 - We call c a critical point

Finding Extreme Values

- 1. Take the first derivative and set it equal to zero
 - a. Solve for all the critical points

2. Plug each critical point back into f(x) and see which is the largest/smallest

-or-

- 2. Take the second derivative
 - a. If f''(c) is $> 0 \rightarrow$ function is concave up \rightarrow local minimum
 - b. If f''(c) is $< 0 \rightarrow$ function is concave down \rightarrow local maximum
 - c. If $f''(c) = 0 \rightarrow inconclusive$

Implicit Differentiation and Differentials

Implicit Differentiation

- Used when functions are defined in terms of both x and y
- Take the derivative of everything with respect to x
 - What is $\frac{dx}{dx}$? What is $\frac{dy}{dx}$?

Differentials

- For a small change in input Δx , the function will change proportionally to the rate of change:

Good luck on your exam!

You can use the rest of the time to practice

Subject	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Math 231 (E)	12pm-2pm	2pm-4pm	8pm-10pm	3pm-7pm			2pm-6pm
	6pm-8pm	6pm-8pm					

