CARE MATH 221 MIDTERM 1 REVIEW

Please sign into the Queue!

Slopes of Tangent Lines

AKA: The derivative at a certain point along a curve (function)

Point Slope Form:

Limits

$$\lim_{X \to a} \widehat{f(x)} = \underbrace{L}_{\text{"What is the y-value getting closer to?"}}$$

Limit and Continuity

along the x-axis"

Existence of a Limit

The limit of a function f(x) exists if and only if the one sided limits of the function are equal.

$$\lim_{x\to c} f(x) = L$$
 if and only if

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$$

Calculating $\lim_{x \to a} f(x)$

When all else fails, graphs and tables can help approximate limits.

Delta-Epsilon Definition

Definition	Translation
1. For every $\varepsilon>0$,	1. For every positive distance $arepsilon$ from L ,
2. there exists a $\delta>0$,	2. There is a positive distance δ from $oldsymbol{a}$,
3. such that	3. such that
4. If $0< x-a <\delta$, then $ f(x)-L .$	4. If x is closer than δ to a and $x \neq a$, then $f(x)$ is closer than ε to L .

Let f(x) be a function defined on the interval that contains x = a.

Then $\lim_{x\to a} f(x) = L$ if for every number $\varepsilon > 0$ there exists some real number $\delta > 0$ so that if

$$0 < |x - a| < \delta$$
 then $|f(x) - L| < \varepsilon$

Limit Laws

properties of limits

Let a,k,A, and B represent real numbers, and f and g be functions, such that $\lim_{x\to a}f(x)=A$ and $\lim_{x\to a}g(x)=B$. For limits that exist and are finite, the properties of limits are summarized in Table

Constant, k

 $\lim_{x o a} k = k$

Constant times a function

 $\lim_{x o a}[k\cdot f(x)]=k\lim_{x o a}f(x)=kA$

Sum of functions

 $\lim_{x o a}[f(x)+g(x)]=\lim_{x o a}f(x)+\lim_{x o a}g(x)=A+B$

Difference of functions

 $\lim_{x o a}[f(x)-g(x)]=\lim_{x o a}f(x)-\lim_{x o a}g(x)=A-B$

Product of functions

 $\lim_{x o a}[f(x)\cdot g(x)]=\lim_{x o a}f(x)\cdot \lim_{x o a}g(x)=A\cdot B$

Quotient of functions

 $\lim_{x o a}rac{f(x)}{g(x)}=rac{\lim\limits_{x o a}f(x)}{\lim\limits_{x o a}g(x)}=rac{A}{B}, B
eq 0$

Function raised to an exponent

 $\lim_{x \to a} \left[f\left(x
ight)
ight]^n = \left[\lim_{x \to a} f\left(x
ight)
ight]^n, \;\; ext{where } n ext{ is any real number}$

nth root of a function, where n is a positive integer

 $\lim_{x o a}f(x)\sqrt[n]{f(x)}=\sqrt[n]{\lim_{x o a}[f(x)]}=\sqrt[n]{A}$

Polynomial function

 $\lim_{x o a}p(x)=p(a)$

Squeeze Theory

```
If h(x) \le g(x) \le f(x) when x is near a, except possibly at a, and \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L, then \lim_{x \to a} g(x) = L.
```


Criteria for Continuity

Continuity

A function is continuous at c when the following three conditions are met:

- 1. f(c) is defined
- 2. $\lim_{x \to c} f(x)$ exists
- $3. \quad \lim_{x \to c} f(x) = f(c)$

Types of Discontinuities

Limit Definition of a Derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

IVT

The Intermediate Value Theorem

Suppose that f is continuous on the closed interval [a,b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a,b) such that f(c)=N.

DIFFERENTIABILITY

Definition of Differentiability

25.1 DEFINITION

Let f be a real-valued function defined on an interval I containing the point c. (We allow the possibility that c is an endpoint of I.) We say that f is **differentiable** at c (or has a **derivative** at c) if the limit

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists and is finite. We denote the derivative of f at c by f'(c) so that

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

whenever the limit exists and is finite. If the function f is differentiable at each point of the set $S \subseteq I$, then f is said to be differentiable on S, and the function $f': S \to \mathbb{R}$ is called the derivative of f on S.

Differentiation

Sum rule
$$\frac{d}{dx}[f(x)+g(x)]=\frac{d}{dx}f(x)+\frac{d}{dx}g(x)$$
 Difference
$$\frac{d}{dx}[f(x)-g(x)]=\frac{d}{dx}f(x)-\frac{d}{dx}g(x)$$
 Constant multiple rule
$$\frac{d}{dx}[k\cdot f(x)]=k\cdot \frac{d}{dx}f(x)$$
 Constant
$$\frac{d}{dx}k=0$$
 rule

Differentiation Rules

$$\frac{d}{dx}c = 0 \qquad \qquad \text{Constant Rule}$$

$$\frac{d}{dx}x^n = nx^{n-1} \qquad \text{Power Rule}$$

$$\frac{d}{dx}\sin(x) = \cos(x) \qquad \qquad \text{Trigonometric Rules}$$

$$\frac{d}{dx}\cos(x) = -\sin(x)$$

$$\frac{d}{dx}b^x = b^x\ln(b) \qquad \qquad \text{Exponential Rule}$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x} \qquad \qquad \text{Logarithmic Rule}$$

Product and Quotient Rule

Product Rule

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

Quotient Rule

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

Trig Derivatives

Trig Derivatives

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\tan x = \sec^2 x$$

$$\frac{d}{dx} \cot x = -\csc^2 x$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \sec x = \tan x \sec x$$

$$\frac{d}{dx} \csc x = -\cot x \csc x$$

Commit these to memory!!

They will show up a lot throughout the calculus sequence

Derivatives of Inverse Trig Functions

$$\frac{d}{dx}\arcsin u = \frac{u'}{\sqrt{1-u^2}}$$

$$\frac{d}{dx}\arcsin u = \frac{u'}{\sqrt{1-u^2}} \qquad \qquad \frac{d}{dx}\arccos u = \frac{-u'}{\sqrt{1-u^2}}$$

$$\frac{d}{dx}\arctan u = \frac{u'}{1+u^2} \qquad \qquad \frac{d}{dx}\arctan u = \frac{-u'}{1+u^2}$$

$$\frac{d}{dx} \operatorname{arccot} u = \frac{-u'}{1+u'}$$

$$\frac{d}{dx} \operatorname{arcsec} u = \frac{u'}{|u|\sqrt{u^2 - 1}}$$

$$\frac{d}{dx}\operatorname{arccsc} u = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$

Chain Rule

$$\frac{d}{dx}\Big[\big(f(x)\big)^n\Big] = n\big(f(x)\big)^{n-1} \cdot f'(x)$$

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

Implicit Differentiation

$$y^5 + 2y = x^2$$

Take the derivative of each term

Logarithmic Differentiation

General Workflow

- Take the natural log of both sides
- 2. Take the derivative of both sides in terms of X
- 3. Get dy/dx onto one side
- 4. Plug in the original equation for any y's in the equation

$y = \sin x^{2x}$	
	Take the natural log of both sides of the equation
$ \ln y = 2x \cdot \ln(\sin x) $	$Apply \ logarithmic \ property \ \log_a M^N = {\color{red}N} \log_a M$
$\frac{d}{dx} \left[\ln y \right] = \frac{d}{dx} \left[2x \cdot \ln \sin x \right]$ $\frac{1}{y} \cdot \frac{dy}{dx} = 2x \cdot \left(\frac{\cos x}{\sin x} \right) + \ln(\sin x) \cdot (2)$ $\frac{1}{y} \cdot \frac{dy}{dx} = 2x \cot x + 2\ln(\sin x)$	Differentiate implicitly
$\frac{dy}{dx} = y \Big(2x \cot x + 2\ln(\sin x) \Big)$	Solve for $\frac{dy}{dx}$
$\frac{dy}{dx} = \sin x^{2x} \Big(2x \cot x + 2\ln(\sin x) \Big)$	Substitute $y = \sin x^{2x}$ into final answer

Pre-worksheet

Practice

Example 3 Find the derivative of the following function using the definition of the derivative.

$$R\left(z
ight)=\sqrt{5z-8}$$

Show Solution >