MATH 231 REVIEW

A Section Bahreini

Topics Covered

- Integration by Parts
- Trigonometric Integrals
- Trigonometric Substitution
- Integration of Rational Functions by Partial Fractions
- Approximate Integration

Integration by Parts

$$\int u dv = uv - \int v du$$

Where

u = f(x)	du = f'(x)
dv = g(x)dx	v = + g(x)dx

Note: May have to repeat process more than once to completely solve

How to Choose "u"?

Use

LIATE!

L-ogarithmic

I-nverse Trig

A-lgebraic

T-rigonometric functions

E-xponential functions

$$sin^{-1}(x)$$

$$x^{2} + 3x$$

$$e^{x}$$

Trigonometric Integrals

•
$$cos^2(x) + sin^2(x) = 1$$

•
$$tan^2(x) + 1 = sec^2(x)$$

•
$$tan^2(x) = sec^2(x) - 1$$

•
$$\sin(2x) = 2\sin(x)\cos(x)$$

•
$$sin^2x = \frac{1}{2}(1 - \cos(2x))$$

•
$$cos^2x = \frac{1}{2} (1 + cos(2x))$$

•
$$cos(2x) = cos^2(x) - sin^2(x)$$

= 1- $2sin^2(x)$
= $2cos^2(x)$ -1

 Used the following trig identities and others to rewrite and simplify trig equations under an integral

Ex: $\int \sin(x)^3 \cos(x)^5 dx$

Trigonometric Substitution

Format	Substitution	Derivative Substitution	Trig Identity
$\sqrt{a^2-x^2}$	$x = a * \sin(\theta)$	$dx = a * \cos(\theta) d\theta$	$\cos^2(\theta) + \sin^2(\theta) = 1$
$\sqrt{a^2 + x^2}$	$x = a * tan(\theta)$	$dx = a * sec^2(\theta) d\theta$	$tan(^2)\theta + 1 = sec^2(\theta)$
$\sqrt{x^2-a^2}$	$x = a * sec(\theta)$	$dx = a * \operatorname{se}(\theta) \tan(\theta) d\theta$	$ta(n^2)\theta = s(c^2)\theta - 1$

Steps to Solve:

- 1. Identify format
- 2. Replace x and dx
- 3. Simply and/or use trig identity
- 4. Convert back to numerical using triangle

Integration of Rational Functions by Partial Fractions

Rational Function	Partial Fraction	
$\frac{px+q}{(x-a)(x-b)}, a \neq b$	$\frac{A}{(x-a)} + \frac{B}{(x-b)}$	
$\frac{px+q}{(x-a)^2}$	$\frac{A}{(x-a)} + \frac{B}{(x-a)^2}$	
$\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)}$	$\frac{A}{(x-a)} + \frac{B}{(x-b)} + \frac{C}{(x-c)}$	
$\frac{px^2 + qx + r}{(x-a)^2(x-b)}$	$\frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-b)}$	
$\frac{px^2 + qx + r}{(x-a)(x^2 - bx - c)}$	$\frac{A}{(x-a)} + \frac{Bx + C}{(x^2 - bx - c)}$	

What integration technique would you use?

How would you solve these integrals?

$$\int \frac{1}{\sqrt{16+x^2}} dx$$

$$2. \int \sin(x)e^x dx$$

3.
$$\int \cos^3(x)\sin^2(x)dx$$

4.
$$\int \frac{3x+11}{(x-3)(x+2)} dx$$

5.
$$\int ln(x)dx$$

6.
$$\int (2x+2)e^{x^2+2x+3}dx$$

7.
$$\int sec(x)dx$$

8.
$$\int \cos(2x)dx$$

Answers

1. Trig substitution

5. Integration by parts

2. Integration by parts

6. U-substitution

3. Trigonometric integrals

7. Integration by parts with u-sub (or known antiderivative)

4. Partial fractions

8. U-substitution (or known antiderivative)

Approximate Integration

Where
$$\Delta x = \frac{b''a}{n}$$

$$L_n = f(x_0)\Delta x + f(x_1)\Delta x + \cdots + f(x_{n-1})\Delta x = \sum_{i=0}^{n-1} f(x_i)\Delta x$$

$$R_n = f(x_1)\Delta x + f(x_2)\Delta x + \cdots + f(x_n)\Delta x = \sum_{i=0}^{n-1} f(x_i)\Delta x$$

Approximate Integration

Trapezoidal Rule

$$M_n=f(\bar{x}_1)\Delta x+f(\bar{x}_2)\Delta x+\cdots f(\bar{x}_n)\Delta x=\sum_{i=0}^{n-1}f(\bar{x}_i)\Delta x$$
 Where $\bar{x}=\frac{x_{i-1}-x_i}{2}$

$$T_n = \frac{\Delta x}{2} (f(x_0) \Delta x + 2f(x_1) \Delta x + \dots 2f(x_{n-1}) + f(x_n)) = \sum_{i=0}^{n-1} (f(x_{n-1}) + f(x_n)) \frac{\Delta x_n}{2}$$

Approximate Integration: Simpson's Rule

$$S_n = \frac{\Delta x}{3} (f(x_0) \Delta x + 4f(x_1) \Delta x + 2f(x_2) \Delta x + \dots + f(x_n)) \approx \int_0^n f(x)$$

- Has the lowest error, therefore the most accurate
- Closest of the methods to finding the actual integration or area under the curve

Questions?