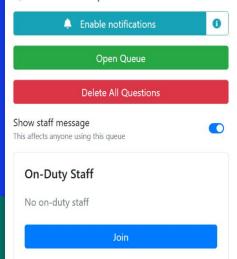
PHYS 214 Exam 1 Review

Alex, Camille, Luke

CARE/CARE PHYS 214 Exam Review

No location specified



This queue is closed. Check back later!

The queue is empty!

PHYS 214: Solving Physics Problems With Sympy

Wednesday, September 17th, 6-8 pm, Location TBD

Units for the Exam

- Waves
- Interference
- Diffraction

Wave Equation

General Wave Propagation: $y(x, t) = A\cos(kx - \omega t + \phi)$ k = wave number (how the wave repeats in <u>SPACE</u>) [m⁻¹] $\omega =$ angular frequency (how the wave repeats in <u>TIME</u>) [rad/s] $\phi =$ phase shift (the starting phase of the wave) [rad] $kx - \omega t + \phi =$ phase

Properties of Waves

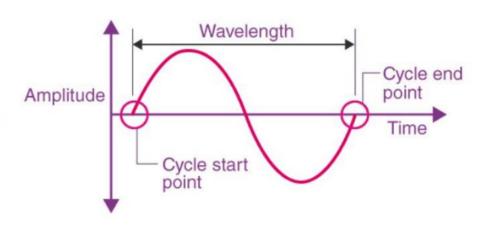
$$\lambda = 2\pi/k$$
; $f = \omega/2\pi$

$$v = \omega/k$$
 $v = \lambda f$

Intensity: $I(x,t) = |y(x,t)|^2$

$$I_{average} = |A|^2/2$$

$$f = 1/T$$



Interference

Superposition (adding): A fancy way of saying that when two waves interact, the resulting wave is the **SUM** of the two individual waves

$$y_1(x, t) = A_1 \cos(k_1 x - \omega_1 t + \phi_1)$$

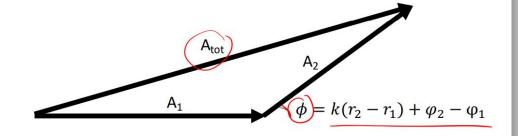
$$y_2(x, t) = A_2 \cos(k_2 x - \omega_2 t + \phi_2)$$

$$y_{tot}(x, t) = y_1(x, t) + y_2(x, t) = A_1 \cos(k_1 x - \omega_1 t + \phi_1) + A_2 \cos(k_2 x - \omega_2 t + \phi_2)$$

If $\phi_1 = \phi_2$, the angular frequencies (ω) are the <u>SAME</u>, and the distance is the <u>SAME</u>, then the waves are <u>IN PHASE</u>

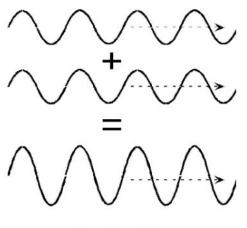
Phasors and Law of Cosines

$$A_{tot}^2 = A_1^2 + A_2^2 + 2A_1A_2\cos(\phi)$$

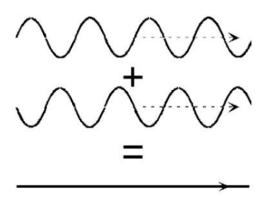


Interference (Cont.)

Phase difference = $k(r_2-r_1) = \phi$ for a two source system at different distances



Constructive



Destructive

In general, for two sources with the same amplitude/intensity:

$$I_{
m tot} = 4I_0\cos^2\left(rac{\Delta\phi}{2}
ight)$$

In your equation sheet, this is written as:

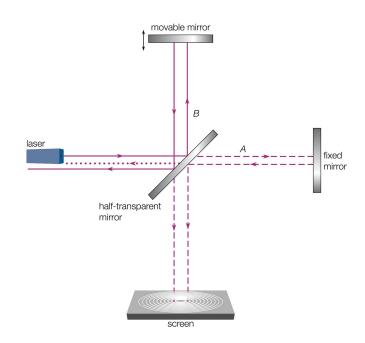
$$I_{\text{total}} = 2A^2 \cos^2 \left(\frac{kr_1 + \phi_1 - kr_2 - \phi_2}{2} \right)$$

Example Problem - Interferometer

A Michelson interferometer is illuminated by a laser of power P = 5 mW and wavelength $\lambda = 632.8$ nm

You want to adjust one of the mirrors to get a **new power of 2 mW**.

How far do you have to move the mirror to achieve this new intensity?



$$I_0 = \frac{P}{4} = \frac{5}{4} = 1.25 \ mW$$

$$I_0 = \frac{P}{4} = \frac{5}{4} = 1.25 \ mW$$

$$I_{new} = 4I_0 \cos^2\left(\frac{\Delta\phi}{2}\right)$$

$$I_0 = \frac{P}{4} = \frac{5}{4} = 1.25 \ mW$$

$$I_{new} = 4I_0 \cos^2\left(\frac{\Delta\phi}{2}\right)$$

$$\Delta \phi = 2 \cos^{-1} \left(\sqrt{\frac{I_{new}}{4I_0}} \right) = 2 \cos^{-1} \left(\sqrt{\frac{2}{4(1.25)}} \right) = 1.77 \ rad$$

$$I_0 = \frac{P}{4} = \frac{5}{4} = 1.25 \ mW$$

$$\Delta \phi = \frac{2\pi}{\lambda} (L_2 - L_1) = \frac{2\pi}{\lambda} (2\Delta x)$$

$$I_{new} = 4I_0 \cos^2\left(\frac{\Delta\phi}{2}\right)$$

$$\Delta \phi = 2 \cos^{-1} \left(\sqrt{\frac{I_{new}}{4I_0}} \right) = 2 \cos^{-1} \left(\sqrt{\frac{2}{4(1.25)}} \right) = 1.77 \ rad$$

$$I_0 = \frac{P}{4} = \frac{5}{4} = 1.25 \ mW$$

$$\Delta \phi = \frac{2\pi}{\lambda} (L_2 - L_1) = \frac{2\pi}{\lambda} (2\Delta x)$$

$$I_{new} = 4I_0 \cos^2\left(\frac{\Delta\phi}{2}\right)$$

$$\Delta x = \frac{\Delta \phi \lambda}{4\pi} = \frac{1.77 * (600 * 10^{-9})}{4\pi} = 84.6 nm$$

$$\Delta \phi = 2 \cos^{-1} \left(\sqrt{\frac{I_{new}}{4I_0}} \right) = 2 \cos^{-1} \left(\sqrt{\frac{2}{4(1.25)}} \right) = 1.77 \ rad$$

$$I_0 = \frac{P}{4} = \frac{5}{4} = 1.25 \ mW$$

$$\Delta \phi = \frac{2\pi}{\lambda} (L_2 - L_1) = \frac{2\pi}{\lambda} (2\Delta x)$$

$$I_{new} = 4I_0 \cos^2\left(\frac{\Delta\phi}{2}\right)$$

$$\Delta x = \frac{\Delta \phi \lambda}{4\pi} = \frac{1.77 * (600 * 10^{-9})}{4\pi} = 84.6 nm$$

$$\Delta x = 84.6 nm$$

$$\Delta \phi = 2 \cos^{-1} \left(\sqrt{\frac{I_{new}}{4I_0}} \right) = 2 \cos^{-1} \left(\sqrt{\frac{2}{4(1.25)}} \right) = 1.77 \ rad$$

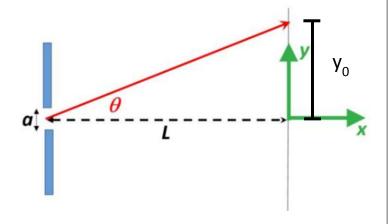
Diffraction

- Single slit diffraction:
 - \circ a = slit width
 - \circ θ_0 = angle of first **minimum**
 - \circ λ = wavelength
- Small $a \rightarrow \text{Large } \theta_0$
- Small angle approximation:

$$0 = \sin(\theta) = \tan(\theta) = y_0/L$$

- Spot size:
 - Radius $\rightarrow y_0 = L^* tan(\theta) \cong L^* \theta$
 - Width $\rightarrow 2y_0 = 2L^* tan(\theta) \approx 2^*L^*\theta$

$$a\sin(\theta_\circ) = \lambda$$

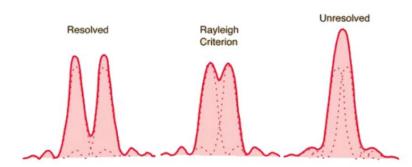


Diffraction (Cont.)

- Circular aperture diffraction
 - Similar to single slit; <u>1.22 factor</u>
- Rayleigh Criterion:
 - Center of the diffraction maximum from the first object falls onto the diffraction minimum from the second object
 - \circ ie. $\theta_{o} \le \theta_{objects}$
 - θ_0 = angle of first minimum of central bright spot
 - For multiple objects θ_o is the minimum angle required to distinguish the two objects
 - \bullet $\theta_{objects}$ = angle between two bright spots

D - Diameter of lens

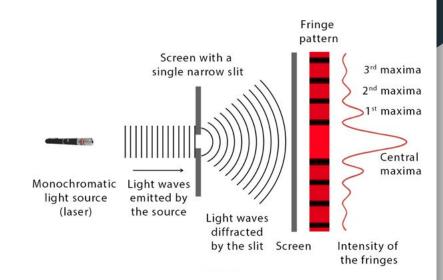
$$D\sin(\theta_\circ) = 1.22\lambda$$



Example Problem - Diffraction

A laser with wavelength $\lambda = 500 \text{ nm}$ illuminates a single slit width of a = 0.1 mm. A screen is placed L = 2.00 m from the slit.

Find the **vertical position** y_4 on the screen of the fourth minimum measured from y = 0 (center of first maximum)



$$a\sin(\theta_0) = m\lambda$$

$$a\sin(\theta_0) = m\lambda$$

$$a\theta_0 = m\lambda$$

$$a\sin(\theta_0) = m\lambda$$

$$a\theta_0 = m\lambda$$

$$\theta_0 = \frac{m\lambda}{a} = \frac{4(500 * 10^{-9})}{0.1 * 10^{-3}} = 0.02 \, rad$$

$$a\sin(\theta_0) = m\lambda$$

$$y_4 = L\theta_0 = 2 * 0.02 = 0.04 m$$

$$a\theta_0 = m\lambda$$

$$\theta_0 = \frac{m\lambda}{a} = \frac{4(500 * 10^{-9})}{0.1 * 10^{-3}} = 0.02 \, rad$$

$$a\sin(\theta_0) = m\lambda$$

$$y_4 = L\theta_0 = 2 * 0.02 = 0.04 m$$

$$a\theta_0 = m\lambda$$

$$y_4 = 0.04 m = 4 cm$$

$$\theta_0 = \frac{m\lambda}{a} = \frac{4(500 * 10^{-9})}{0.1 * 10^{-3}} = 0.02 \, rad$$

PHYS 214: Solving Physics Problems With Sympy

Wednesday, September 17th, 6-8 pm, Location TBD

Good luck!

Feel free to ask any questions you may have.

You got this!

