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Our group

Maxwell Gold (PHYS) Selina Nie (CS)
• selina2@illinois.edu

• Near-term cryptography

• Position verification

• Joint measurements

• Nonlocal quantum computations

• Cybersecurity and incident response
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• mjgold2@illinois.edu

• Provable cryptography

• Quantum resource theories

• Multipartite entanglement

• Certification protocols for quantum resources

• Neutral atom hardware

Eric Chitambar (ECE)
Group website: https://quantum-entangled.ece.illinois.edu/ [pardon our dust!]
• Quantum information theory
• Quantum resource theories
• Quantum computing
• Cryptographic systems and protocols
• Lasers and optical physics
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Cryptographic agility and quantum technology

Communication technology for security
• Should secrets ever leave your person? 

• Cryptography: cost of decryption is greater 
than the value of the secret. 

Future-proof security
• All classical cryptography has a lifetime.

• Quantum can provide information 
theoretic privacy.

• A unique advantage?
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Abstract cryptography w/o computational hardness
• Information theoretic (provable, non-cryptographic) security: 

privacy with a proof! 

• Classical cryptography assumes the existence of one-way 
functions (pseudo-randomness that is hard to invert)

• Quantum cryptography demands security without such 
assumptions:

• Establish provable security without computational hardness

• What does information theoretic privacy mean? Think a uniformly 
random one-time pad

• Security formalized by Claude Shannon [Sha89]
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Quantum cryptography
• Quantum measurements generate probability 

distributions
• Quantum systems can’t be copied arbitrarily
• Pioneers: Bennet, Brassard, Ekert, Mayers, Yao, 

Lo, Chau, etc.
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Information processing with quantum systems

Quantum Computing (QC)
• A general tool for running quantum 

algorithms (e.g. Shor’s factoring algorithm)

• Requires many qubits and gates

• SotA/near-term hardware is noisy

• Cryptanalytically relevant quantum 
computers (CRQC) — the threat to classical 
cryptosystems

Quantum Networking (QN)
• A problem specific tool for (multi-party) 

networking

• Resource efficient

• More hardware mature and near-term

• A quantum network can serve as a 
communication layer within a 
cryptosystem
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Quantum networking tools in the near-term

Communication (flying qubits)
• How do we send information? Fiber (free-space) 

optical networks

• Photons are subject to little noise, but they can be 
lost

• All optical networks exist for limited tasks (e.g. key 
distribution)

Memory (matter qubits)
• How do we store information? Network nodes that 

interact with light

• A multitude of architectures with varying 
advantages (i.e. coherence, photon collection, etc.)

• Memory nodes allow additional functionality (e.g. 
two-way communication/computation)
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Quantum Key Distribution (QKD)
• Protocol for expanding symmetric bipartite secret key

in the presence of an eavesdropper [BB84, Eke91]

• Requires authenticated public channel (achieved by an 
initial shared secret) to communicate measurement 
results and detect the eavesdropper 

• Security comes from a physical assumptions: no-
cloning theorem

• Eavesdropper cannot clone an arbitrary quantum state

• Various forms of device-independent QKD (DIQKD) 
further removes assumptions on hardware

• Allow the adversary to prepare the quantum states
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Pros Cons

Protocol security is well 
understood

Implementation security 
requires more research

Hardware gap can shrink Specialized hardware is 
required

Future proof, i.e. PQC may 
break

PQC is sufficient for a CRQC 
(we think)
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Quantum Pos.-Verification (QPV)
• Utilizing a party’s geographic location as their only

cryptographic credential

• Exploits the relativistic no-signaling principle: 
messages cannot travel faster than the speed of light

• Based on response time, can guarantee that the prover 
is within a certain distance of the verifier

• Currently [BCF+14]: Any protocol can be broken if 
adversaries share an exponential amount of EPR Pairs 
(quantum resources)

• Open question: Are there protocols that can be executed 
efficiently (poly-time/resources) by honest players but 
require exponential resources for attackers to break it?

• [OUR WORK]: Interpolating between [Vai03] and 
[BK11]

• Quantum circuit complexity vs. needed entanglement

• Actions of honest parties are simple enough, can be 
implemented using current quantum technology

• Future Applications: Military Communications and 
Financial Transactions
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Multi-party computation (MPC)
• Symmetric key enables sending private message. What 

enables private function (circuit) evaluation?

• MPC: Parties want to evaluate some shared function, 
without revealing anything about their inputs.

• E.g., Yao’s famous millionaire problem.

• Multiplication of party inputs requires interaction! Access 
to a multiplication (Beaver) triple minimizes this 
interaction [Bea92].

• [OUR WORK] Triples can be obtained directly from 
entangled states, such as graph states [GC25].

• Can perform efficiently on near-term QN hardware 
[GLGC25].
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Provable security layers in hybrid cryptosystems
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[RW23]

Enc(𝑀)

Security against 
harvest now, 
decrypt later.

Enc(𝑀)



|

Our group (reach out via email for more!)

Maxwell Gold (PHYS) Selina Nie (CS)
• selina2@illinois.edu

• Near-term cryptography

• Position verification

• Joint measurements

• Nonlocal quantum computations

• Cybersecurity and incident response
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• mjgold2@illinois.edu

• Provable cryptography

• Quantum resource theories

• Multipartite entanglement

• Certification protocols for quantum resources

• Neutral atom hardware

Eric Chitambar (ECE)
Group website: https://quantum-entangled.ece.illinois.edu/ [pardon our dust!]
• Quantum information theory.
• Quantum resource theories.
• Quantum computing.
• Cryptographic systems and protocols.
• Lasers and optical physics.
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