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Outline

Lecture

= NanoString spatial omics platforms

= Case study in Non-Small Cell Lung Cancer (NSCLC)

* |ntroduction to MC-SOLVE (Mayo in-house developed analytic framework)

Lab
= MC-SOLVE hands-on demo
= [ab material preparation: Nicholas Dove, PhD; and Yi Liu, PhD
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MAYO

Introduction to NanoString Spatial Platforms C%C

= GeoMx Digital Spatial Profiler (DSP): High resolution (10 microns)
= CosMx Spatial Molecular Imaging (SMI): True single cell resolution
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GeoMx Digital Spatial Profiler (DSP): T
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» Select distinct tissue compartments or cell types
= Use micromirrors to expose the ROl to UV
» Release barcodes for quantification: 18000+ protein coding genes
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GeoMx Digital Spatial Profiler (DSP): M@AND

One ROI per well (96 well plate) (Index2(8)  Read2
s N .
Oligo-labeled RNA probes . .
Index 2 (A) Read 1 Index1 Sequencmg library
T TT - 5
Complementary SPR1 SPR2
DNA Sequence DNA 0“ Ota 29 t 33nt 34 nt 24nt
% / 90 UMl RTSID |i7
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T RNA
aroet 96 well collection PCR
of ROls Purification bu SPRI beads
Pooling

RTS ID 3’*
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20nt  26bp  20nt Sequencing library Prep

DNA oligo tag: one ROI per well

» Readout tag sequence identifier (RTS ID): biological targets = 5/i7: uniquely identifies ROI
= Unique molecular identifier (UMI): identify PCR artifacts = P5/P7: binding to Illlumina flowcell
» SPR: sequencing primers = P5/P7: PCR primers
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GeoMx NGS Pipeline M@ANU

UMI| [RTSID = A gene count table per ROI
IS Read 2 17 = Compare ROIs of the same sample: e.g.,
N B I Tumor adjacent to immune cells vs. others
26 bp = Compare similar ROIs between samples
1 AUTOMATED DATA PROCESSING PIPELINE

Generate
Remove PCR Digital
duplicates Count
with UMI Conversion
(DCC) files

Align
reads to
RTS_ID
barcode

~ Compile Process
sequencing reads for high
files quality

INTERACTIVE DATA ANALYSIS AND VISUALIZATION

- E_; G5 Outa

Calculate Normalize
background segments

Analyze
biology
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MAYO

GeoMx Digital Spatial Profiler Summary Clinic

» Pseudo-spatial: via selection of ROls

= Resolution: 10 microns
v' cell size: 10-20 microns in diameter
v not conducive to single-cell analysis: need at least 20-300 cells per ROI for reliable
quantification of transcripts

» Throughput: full transcriptome, plus more targeted panels

v' cancer transcriptome atlas (>1800 RNASs)
v" TCR profiling add-on
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CosMx Spatial Molecular Imaging (SMI): True Single CLINIC
Cell Resolution, True Spatial U

CosMx™ Uses Single Molecule In Situ Hybridization Chemistry with Cyclic Imaging Highest-PIex Spatia| Analysis with Subcellular Resolution

Whole Tissue Section
i " Single-cell Subcellular

The Smallest
Readout Domain
Uniquely Enables

Both FFPE and
Multiomics

Ve

~50 nm in the XY plane

10um

nanoStrin
UF

In Situ Chemistry: protein, RNA Z-stack of multi-channel  Subcellular Resolution
tissue images
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e Y

S 3D
< :
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GeoMx vs. CosMx

Spatial-omics for Every Spatial-scale

Automated, FFPE Capable,
Multiomic (RNA + Protein) Analysis

Digital Spatial Profiler

Whole Transcriptome Single-Cell Resolution
High Throughput Entire Tissue Section
Multi-cellular High Multiplexing

Large Dynamic Range Comprehensive Map

Differentiation Cell Type
Between Samples Differentiation

A ' ©2019 MFMER | Slide-9



MAYO

CosMx SMI chemistry and workflow C%C

* in situ hybridization (ISH) probes
—_— v Target binding domain (30-50 nt)
M s orobe v' Read out domain (60-80 nt)
v 4 consecutive 10-20 nt sequences that are individual
landing sites of 4 reporter probes
= fluorescent readout probes called reporters
S v' photocleavable sites to remove reporters (3)
’ v The reporter landing domain still occupied after PC
= detect RNAs in intact tissue
v" 5 ISH probes are designed per gene to detect different
regions of the RNA target,

L

N
Target-binding "\
domain
35-50 nt
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CosMx SMI chemistry and workflow

Reporter probes

One of 64 unique barcodes

| T | Photocleavable linkers @
uorophores - ™
Fl ph 15-60

Target probes

Gene specific hybridization domain: Reverse-complement
+ Binds to target transcript binding sites for «— Red Green Blue Yellow
+ 35-50nt landing sites (10-20 nt) rcR1 reGl rcBl reyl
rcR2 reG2 rcB2 rey2
rcR3 rcG3 rcB3 rcY3
rcR4 rcG4 rcB4 rcY4
Fluorescent probe landing sites: Fes FeBs Fes reYs
* Four sites, each chosen from a pool of 64 rcRé rcGé rcB6 rcYé
sequences: R1-16, G1-16, B1-16, Y1-16 rcR7 reG7 rcB7 rcY7
« Bind not to target transcript but to reporter probes rcR8 reG8 rcB8 rcY8
*+ 10-20 nt each rcR9 rcG9 rcB9 rcY9
rcR10 rcG10 rcB10 rcY10
rcR11 rcG11 rcB11 rcYll
rcR12 reG12 rcB12 rcYl2
rcR13 rcG13 rcB13 rcY13
rcR14 rcG1l4 rcB14 rcYl4d
rcR15 rcG15 rcB15 rcY15
rcR16 rcG16 rcB16 rcY16
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Watch Nanostring
University Video
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https://university.nanostring.com/cosmxtm-smi-101-introduction-to-the-technology-july-2023/1651626/scorm/3o33cjd7htl77
https://university.nanostring.com/cosmxtm-smi-101-introduction-to-the-technology-july-2023/1651626/scorm/3o33cjd7htl77

MAYO

CosMx SMI chemistry and workflow CLINIC

Y

Reporter s 1 Reportersd 2 Reportersd 5
Gene # Barcode Image 1 Image 2 .- Image 5

Reporter set 13 Reporter set 16
Image 13 - Image 16

Gene 1 110000100000000 ,@ ,.Il)iﬂ ,.J ,\z.l ,\.l ,.\\J,
Gene 2 1100101000000000 @ ,.B ,\\J J ,\J J

Gene 3 0100100000001001 "\bj ,’i%_.l ,ib?l ,\_J' ﬁ ,.;ZJ
e NN YD

= Every gene has a 16-digit binary barcode (with four 1s, and 12 0s)

= with Hamming distance 4 (HD4): every barcode is separated by an HD of at least four from all other
barcodes to maximally suppress RNA decoding error.

» Images will localize a gene to a subcellular location: one “lit-up” location is one copy of the transcript.
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CosMx SMI: 3D RNA localization

Raw images X, y, z identification

Optical Z-stacks: number of Z-stacks can be
different between experiments.
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CosMx SMI chemistry and workflow: RNA vs. Protein C%C

Reporter Reporter
. PC sites

PC-Cleavable

ISH probe

Throughput
S _ . _
) s % Se 64, 68, or 72 proteins
-\\v 59()& ﬁg
Target-binding '\ f:& s Protein Barcode Chemistry

Site-specific
linker

domain
35-50 nt

Antibody = Each antibody has a specific linker with

a readout domain
Protein = Protein chemistry is similar, but with a
single readout domain for a single-

color reporter to quantify a protein
target

B Yy ;.
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CosMx SMI: Lab Workflow

NOT Full-Slide

1 FOV (Fields of View)
| Selection (10s — 100s)

On selected FOVs

Panels:
Measurements:
= Segmentation
= Cell typing

= RNA expression

=  RNA cellular coordinates
= Niche or Neighborhood

= CelllFOV level data

Protein Segmentation Markers

100 um

1000-Plex RNA Assay

Up to 108-Plex RXETes L
64-Plex Protein Assay >
On selected FOVs '

. . Data Size:
Adjacent Slide Panels: per FOV: ~2GB (10-300
Human 6K Discovery RNA FOV per project)

Human Immuno-Oncology
Mouse Neuroscience
Custom Assays ...

Whole Transcriptome (>18K genes, 2025)
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Single cells identified by segmentation

Accurate cell segmentation is challenging:

Heterogeneous Shapes: nearly impossible to define mathematical shape models.

Variation in Size and Shape: Unlike nuclei, the cytoplasm exhibits significant
variations in shape and size.

Weak Boundary Gradients: Cells that are in close proximity can have weak
boundary gradients

Makeshift Nature of Segmentation Approaches: dataset constraints, including

differences in staining or imaging modality, artifacts in image capture, or
morphological differences.
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Single cells identified by segmentation

Consequence of minor segmentation error

® Tumor mRNA

® T-cellmRNA

- Segmentation
boundaries

O

Tumor mRNA
falsely attributed
to T-cell after mild
segmentation
errors.

Precise cell segmentation is the most
important parameter when determining data
accuracy. An imager’s ability to identify
accurate cell boundaries to minimize
segmentation errors provides the confidence
to draw biologically impactful conclusions
from your spatial data.
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Single cells identified by segmentation

A 4

Nuclear
Subtract

Prediction
7'y \ 2
Intersection and Cell“farget Mapping
! P * Compartment map
— ¥ * Cell shape and statistics
Normalized v | cell
and Combined Prediction

= cell membrane and morphology marker protein images
v a nuclear dye (DAPI)
v Protein markers: Membrane (CD298), epithelial cells (PanCK), and T cells (CD3), ...

= machine-learning augmented cell segmentation (Cellpose neural network models)
= transcript-based segmentation refinement
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Single cells identified by segmentation

Morphology Segmentation Cell assignment

B KRT19

Most genes/transcripts
have a cell assignment
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Data

= Atable per FOV: genes, counts, cell ID, annotation

» A Seurat object: for analytics similar to those of single cell RNA-Seq (cell
typing, U-map, differential expression, etc.)

= Nanostring AtoMx Pipeline: inspection of images, QC etc.
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CosMx Spatial Omics: an example in NSCLC

Category

Tissue type
Panel
Number of slides analyzed
Total tissue area analyzed (um’)
Number of Field of Views (FOVs)
Total number of cells
% Cells passed QC (= 20 transcripts)l
Number of cells analyzed

Transcripts detected

% of transcripts assigned to cells I

Cellular transcripts/um3

Mean transcripts/cell I

Mean negatives/cell/target

]IGenes detected I

% Genes detected

Mean false call/cell/target

FFPE human lung
980 plex

8
753,480,217
233

800,327
96.1
769,114
262,649,897
79.2

0.446

260

0.0429

850

88.5

0.0092

Lung 5_rep 3
FFPE human lung
980 plex
1
97,014,620
30
100,292
94.7
94,977
36,505,900
81.7
0.523
297
0.0323
874
91.0
0.0058

Lung 5_rep 4
FFPE human lung
980 plex
1
97,014,620
30
106,660
99.3
105,903
42,342,772
83.3
0.59
331
0.0611
763
79.5
0.0096

Lung 5_rep 5

FFPE human lung
980 plex

1
97,014,620
30

100,264
97.6
97,898
31,583,902
82.1

0.456

259

0.0283

865

90.1
0.0076

FFPE human lung
980 plex

1
97,014,620
30

93,795
96.2
90,193
35,952,059
80.9

0.423

310

0.0238

849

88.4
0.0100

Lung9_rep 1
FFPE human lung
980 plex
1
64,676,413
20
91,972
95.3
87,677
26,404,493
85.7
0.456
246
0.0415
805
83.9
0.0105

Lung 9_rep 2
FFPE human lung
980 plex
1
145,521,930
45
150,504
92.8
139,713
33,597,576
71.2
0.28
159
0.0412
724
75.4
0.0083

FFPE human lung
980 plex

1
90,546,979
28

73,997
96.6
71,489
26,074,273
69.1

0.393

244

0.076

629

65.5
0.0090

Data Size:

per FOV: ~2GB (233 FOVs: 466 GB)
5 patients, 8 samples

He S, et al. Nat Biotechnology. 2022, 40(12):1794-1806.
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Cell Typing:

= Similar to scRNA-Seq’s cell typing: using cell type-specific markers to define the cell
type of any cell

= Challenges: 1000 RNA targets only, may not be sufficient for cell typing of all cells
v" 1000 RNA targets were partially optimized for cell typing
v" de novo clustering without assigning cell types?

= Cell typing + spatial information Lung 5-3

ke 5 2 AT SR ™
Lung 5 Lung 6 Lung 9 = 1
. ; g & . e o r
@ Endothelial Jct A \ y N o o AEE YT ¢ W
i % S e N : Y g o d [ » ! i
, o Fibroblast e Y ), s B oy *3 2 \ e
4 ® Macrophage ngatt ol »_.#, Ny . g . 4
= o Mast O e Gy 0 E e "” O Lt S TR - :
. { :300 2 !'5;5}:\.‘_“ o - e B W
¢ 4. onocyte o G T i | . S 3
* Neutrophil i R LYE ;- PGPS '
\ 1 o NK . / 1 "y " . |‘J'..1.' L vl o ; p J ’ 1 L4
~ \ pDC RN 2 - i
P § o Plasmablast e s : he N A
Treg ; o o - o
Tumor i v ’
Lung 12 Lung 1 ¢ . ¢
= g s Epithelial B o 8
® Memory CD4 T cell s SRS 4 LS g }
e Naive CD4 T cell *[‘_‘ s ol y %
e Memory CD8 T cell ] { 1A

’W o Naive CD8 T cell 5% N
" el F ", L.
4 ' 5 - ~ "
. n - \ -m ‘-
“ % el N ~WTYRF R
< my L 1 ) ¥
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cell neighborhoods: from spatial information

Closest K neighbors

Cell 001

Cell 002

Neighborhood matrix:
number in closest K neighbors

5 15 30 50

For every cell, the nearest K neighbors are identified, and a summary of those
neighbors is recorded (e.g., abundance of each cell type) - matrix of cells and
neighborhood characteristics
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UMAP illustration of the neighborhood matrix: of all
cells, all FOVs, across all samples (769,114 cells)

by cell type

f el
o SRR

e Endothelial Immune ‘

» Fibroblast ST Ty
n..t J

e Macrophage . ?ﬂ-%-.__"i

Neutrophil
o NK
pDC
® Plasmablast
» Treg
Tumor
Epithelial
® Memory CD4 T cell
e Naive CD4 T cell
e Memory CD8 T cell tumor
e Naive CD8 T cell
e Bcell

Mast 1 4
e mDC Q\
® Monocyte

by sample by neighborhood clusters

TME Niches

. G
% Lung 5-3 Lung 6
*.?a tfﬂ / . ey =
Y e

-
] » :
® Ll.lng 5-3 "‘ ’ 'q
» Lung 5-4 _ B
- %m . i . 1 mm

* Lung 6 L Lmm,
* Lung 9 ;
: tﬂﬂg }% O Plasmablast-enriched stroma

: : B Lymphoid structure
Neighborhoods unique to & Myeloid-enriched stroma

E Tumor-stroma boundary
or shared by samples O Tumor interior

O Stroma

& Neutrophils

B Macrophages

B Immune-enriched

9 clusters
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Biological questions that can be answered by
neighborhoods or niches

Mean gene expression of  SPP1 (p=5 x 107%7): two
macrophages in each niche sub-types of macrophages

ek i3 ... ® Endothelial FDR < 0.05
+% e Fibroblast g SPP
e Macrophage ;

*5 3. _ . .
Mast *10++ WA AN C 3

5% o mDC
“..' ® Monocyte
* ' e Neutrophil
.o eNK
sev 3o o pDC
.. e Plasmablast
Treg
Tumor
) L ¥ ‘ Epithelial
1 mm : ; e Memory CD4 T cell
EELE o R _ " ® Naive CD4 T cell
® Memory CD8 T cell
e Naive CD8 T cell
e B cell

% %% SPP1: mediates
S 788 macrophage
& polarization and

y LS
A Ty

415 genes

. ¥y upregulate PD-L1
iy o SR expression

B .".“;."-'..
AN VT AR WP

SO0 >Hqg-4 W LN )
ewons
aunwiw|
&

ainmons proydwA
Joualul Jown |

sebeydoioep

Arepunoq ewons—iown |
BWONS paydLua-plojeAp

Changes of gene expression in macrophages between niches in Lung 6

Does a cell change expression profile in response to neighbors?
e
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Interactions between Tumor and T-cells

CadTe"nS Calprotectin
Other , binding
EGFR
sighaling

100 unique

TNF ligand-receptor
signaling pairs in the
980-plex panel
\Ephrins
TLR —
signaling
PDGFR
signaling / | \

Notch MHC Immune
signaling class | checkpoints

Distribution of ligand-receptor pairs
between 980 RNA targets: including
many tumor-immune interface pairs

Step 1: Step 2: Step 3a: Step 4a: .
build Delaunay extract reorient randomize Stizzibai?gsit:i'niﬂc:fte
network linkages linkages linkages 9

LR interaction _ Z VvV LR,

SEOIe nlinkages

Step 5: calculate P value

Distribution of
randomized scores

Interaction
score
|

1
P value

{1
{11

a spatial adjacency network, given the spatial locations of each cell.

For each pair of adjacent tumor -T cells: an interaction score using the geometric
mean of their ligand and receptor expression.

LR interaction score was calculated across all adjacent cell pairs for 100 distinct
LR pairs

An average score was calculated for each LR pair.

Each average score was tested to determine whether it was enriched by the
spatial arrangement of cells within the adjacency matrix, compared to a null
distribution of simulated average scores calculated using randomized adjacency
networks.
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Interactions between Tumor and T-cells

PD-L1 binds to PD-1 and inhibits
T cell killing of tumor cell

PD-L1/PD-1 (CD274/PDCD1): Low interaction in Lung 6, higher
in Lungs 5, 13,9, 12

L 9
Tumor cell e e

Lung 9

CEACAMG/EGFR _ :
TNFSF13B/TNFRSF17 AL
CXCL16/CXCR6 . ' 1 mim
HLA-E/KLRK1 Ling 55 —
APP/TNFRSF21 10 z Y2
(=] % |
EFNB1/ERBB2 3 LA ; @l
- 08 2 ¢ e
H DD N
| 8 ‘ o .
CD274/PDCD1 0.6 = 3.
| | TNFSF12/TNFRSF12A g L& 5
oy =
CDH1/ITGAE o 2 '?%nm" § . | 1mm
CDH1/EGFR 0.2 z h'J"Il_ung 5-4 Lung 12
CEACAM1/EGFR 3 » 3
ANXA1/EGFR e - 1
NRG4/EGFR ) v vﬁ
Calprotectin/ALCAM 3 ¥ =
NRG4/ERBB2 &% % i
] L] ' M -
LR interactions change across 5 5 2 % ¢ oy 5 £ L
55 ¢ 5 ¢ wngss (e
space and between samples 3 3 i
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MAYO

CosMx SMI Summary o

» Spatial platform with true single cell resolution
» Biggest challenge: cell segmentation (foundation of all analyses)

= Throughput:
v Current: ~1000 RNA, and 6000 RNA panels
v" Future: full transcriptome (>18K genes, 2" half of 2025)
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Clinical Application of spatial transcriptomics

= Mulholland EJ, et al., Redefining clinical practice through spatial profiling: a
revolution in tissue analysis. Ann R Coll Surg Engl. 2024;106(4):305-312.

» Zhang L, et al., Clinical and translational values of spatial transcriptomics.
Signal Transduct Target Ther. 2022;7(1):111

» Hu W, et al. Spatial transcriptomics in human biomedical research and clinical

application. Curr Med 2, 6 (2023).
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Clinical Application of spatial transcriptomics

Cold

Excluded

Hot

CDB8+ T cells are absent from
the tumor and its periphery

CD8+ T cells accumulated but

do not efficiently infiltrate

CD8+ T cells infiltrate but their
effects are inhibited

Response to immune checkpoint inhibitors

Immunotherapy

= Activate patient’s own
Immune system

= Hot tumors are more likely to
respond to immunotherapy

" e.g., lung 6 vs. others

Tumor immune phenotypes and immunotherapy outcome
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The End
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MC-SOLVE: an Interactive Dashboard for Spatial
Single Cell Analyses

Mayo Clinic's Spatial Omics Landscape Visualization
and analysis Engine

Nicholas Dove, PhD; and Yi Liu, PhD




MAYO

MC-SOLVE Main Developers: C%C

Nicholas Dove Zach Fogarty Clark lkezu

Motivation: Few analytic frameworks allow users to engage directly with data by visually selecting or labeling cells
and regions on tissue maps or embedding plots, a functionality essential for refining downstream analyses with
expert knowledge. Interactive annotation is increasingly recognized as critical in spatial single-cell

analysis. Automated algorithms often struggle to define cell types or tissue regions that are readily apparent to
human experts through morphology or context. For instance, a pathologist can delineate tumor margins or
anatomical sub-regions by eye and identify artifactual cells and expression signals for exclusion, which are
subtleties that generic clustering or segmentation algorithms may overlook. Incorporating domain knowledge
requires the ability to visually select or exclude cells and regions during analysis.
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