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The Importance of Gene Regulation
2

Image Credit: Nick Youngson / Alpha Stock Images



DNA, RNA, Proteins
3

DNA: a long sequence of nucleotides (a,c,g,t) 

mRNA: a physical “copy” of gene

Image Credit: udaix / Shutterstock.com

Gene: a piece of DNA, has the “code” to make a protein

protein:  molecule with 
important functions in cell

GENE EXPRESSION

CAN BE REGULATED

“Transcription”



Gene Regulation

4

• Gene regulation is the process 
of turning genes on and off. 

• Gene regulation ensures that 
the appropriate genes are 
expressed in the right cells at 
the proper times. 

Image Credit: Wikimedia Commons



Gene Regulation: 
fast and slow transcription
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Low gene 
expression

High gene 
expression

Gene

mRNA

Machinery for 
transcribing gene



Regulation by Proteins called 
Transcription Factors (TFs)
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TF

GENE

TCTAATTG

BINDING
SITE

Humans have ~2000 TFs



Different cells may have different TFs
7

TF1

TF1

TF1

TF1

TF2

TF2

TF2

TF2

TF1 activates  gene.
High gene expression

Skin cell Heart cellLiver cell

TF2 represses gene.
Low gene expression



Gene regulation builds bodies 8

Source: https://thegreatfruitflyescape.weebly.com/fruit-fly-basics.html



Different cells occasionally have 
different DNA
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TF1 binds DNA and activates gene.
High gene expression

TF1

TCTAATTG

TF1 cannot bind DNA, doesn’t activate gene.
Low  gene expression

TCTGGTTG

TF1

mutation

Normal cell Tumor cell



Gene Regulation is disrupted in cancer
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Source: Cancer Research UK / Wikimedia Commons



Most disease-related mutations are 
outside of genes 

11

Source: https://www.ebi.ac.uk/training/online/courses/gwas-catalogue-exploring-snp-trait-
associations/what-is-gwas-catalog/what-are-genome-wide-association-studies-gwas/

(impact gene regulation)



Gene Regulatory Networks: 
TF-gene relationships 
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TF1

TF1

TF1

TF1

TF1 activates  gene.
High gene expression

Healthy 
sample

Tumor 
sample

G1G1

TF1

G1



Gene Regulatory Networks: 
TF-gene relationships 

13

TF1

G1G2G3G4G5

TF2

G6G7G8G9

“Gene Regulatory Network” (GRN)



Genetic regulatory network 
controlling the development 
of the body plan of the sea 
urchin embryo. 

Davidson et al., Science, 
295(5560):1669-1678
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GRNs can be reconstructed 
computationally

15
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•Goal: discover the gene regulatory network
•Sub-goal: discover the genes regulated by a 
transcription factor



Genome-wide assays
17

One experiment per cell type AND PER TF
 ... tells us which TF might regulate a gene of interest

Expensive !
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•Goal: discover the gene regulatory network
•Sub-goal: discover the genes regulated by a 
transcription factor

•… by DNA sequence analysis



The regulatory network is encoded in 
the DNA

19

It should be possible to predict 
where transcription factors bind, 
by reading the DNA sequence

TF1

TCTAATTG



Motifs and DNA 
sequence analysis

20



Finding TF targets
21

•Step 1. Determine the binding specificity of a TF

•Step 2. Find motif matches in DNA

•Step 3. Designate nearby genes as TF targets



Step 1. Determine the binding 
specificity of a TF

22

ACCCGTT
ACCGGTT
ACAGGAT
ACCGGTT
ACATGAT
5 0 2 0 0 2 0 A
0 5 3 1 0 0 0 C
0 0 0 3 5 0 0 G
0 0 0 1 0 3 5 T

“MOTIF”



How?
23

• SELEX

Source: http://altair.sci.hokudai.ac.jp/g6/Projects/Selex-e.html

TAACCCGTTC
GTACCGGTTG
ACACAGGATT
AACCGGTTA
GGACATGAT

TAACCCGTTC
GTACCGGTTG
ACACAGGATT
AACCGGTTA
GGACATGAT



How?
24

• Protein binding 
microarrays

Source: https://doi.org/10.1093/bfgp/elq023

TAACCCGTTC
GTACCGGTTG
ACACAGGATT
AACCGGTTA
GGACATGAT

TAACCCGTTC
GTACCGGTTG
ACACAGGATT
AACCGGTTA
GGACATGAT



Motif 
Databases

25

• JASPAR: 
• https://jaspar2020.genereg.net/ 

https://jaspar2020.genereg.net/


Motif Databases
26

• TRANSFAC https://genexplain.com/transfac/ 
• Public version and License version

• Cis-BP http://cisbp.ccbr.utoronto.ca/ 
• Experimentally determined as well as computationally inferred motifs

• Hocomoco: https://hocomoco11.autosome.org/ 
• Human and mouse motifs

• UniProbe: http://thebrain.bwh.harvard.edu/uniprobe/
• variety of organisms, mostly mouse and human

• Fly Factor Survey: https://pgfe.umassmed.edu/ffs/ 
• Drosophila specific

https://genexplain.com/transfac/
http://cisbp.ccbr.utoronto.ca/
https://hocomoco11.autosome.org/
http://thebrain.bwh.harvard.edu/uniprobe/
https://pgfe.umassmed.edu/ffs/


Step 2. Finding motif matches in DNA
27

• Basic idea:

• To score a single site s for match to a motif W, we use

Motif: Match:
Apprx. Match:

ACCGGTT
ACACGTT

Pr 𝑠𝑠 𝑊𝑊



What is Pr (s | W)?
28

5 0 2 0 0 2 0 A

0 5 3 1 0 0 0 C

0 0 0 3 5 0 0 G

0 0 0 1 0 3 5 T

1 0 0.4 0 0 0.4 0 A

0 1 0.6 0.2 0 0 0 C

0 0 0 0.6 1 0 0 G

0 0 0 0.2 0 0.6 1 T

Now,  say s =ACCGGTT (consensus)
Pr(s|W) = 1 x 1 x 0.6 x 0.6 x 1 x 0.6 x 1 = 0.216.

Then, say s = ACACGTT (two mismatches from consensus)
Pr(s|W) = 1 x 1 x 0.4 x 0.2 x 1 x 0.6 x 1 = 0.048.  



Scoring motif matches with “LLR”
29

• Pr (s | W) is the key idea.
• However, some statistical massaging is done on this.
• Given a motif W, background nucleotide frequencies Wb and a site s,
• LLR score of s =

log
Pr 𝑠𝑠 𝑊𝑊
Pr 𝑠𝑠 𝑊𝑊𝑏𝑏

• Good scores > 0. Bad scores ≲ 0. 



FIMO program
30

• Takes motif W,  background Wb and a 
sequence S.

• Scans every site s in S and computes its 
LLR score.

• Uses sound statistics to deduce an 
appropriate (p-value) threshold on the 
LLR score. All sites above threshold are 
predicted as binding sites.

https://meme-suite.org/meme/tools/fimo 

Grant, Bailey, Noble; Bioinformatics 2011.

https://meme-suite.org/meme/tools/fimo


Finding TF targets
31

•Step 1. Determine the binding specificity of a TF

•Step 2. Find motif matches in DNA

•Step 3. Designate nearby genes as TF targets



Step 3: Designating genes as targets 32

Predicted binding sites for motif of TF called “bcd”

Designate this gene as a target of the TF

Sub-goal: discover the genes 
regulated by a transcription factor 
… by DNA sequence analysis



Computational motif discovery
33

Image Credit: Nick Youngson / Alpha Stock Images



Why?
34

• We assumed that we have experimental 
characterization of a transcription factor’s binding 
specificity (motif)

• What if we don’t?

• There’s a couple of options …



Option 1
35

• Suppose a TF regulates five different genes
• Each of the five genes should have binding sites for TF in 

their promoter region
Gene 1
Gene 2
Gene 3
Gene 4
Gene 5

Binding sites for TF



Option 1
36

• Now suppose we are given the promoter regions of the five genes 
• G1, G2, … G5

• Can we find binding sites of a TF, without knowing them a priori ?

• This is the computational motif discovery problem

• Find a motif that represents binding sites of an 
unknown TF



Option 2
37

• Suppose we have ChIP-Seq data on binding locations of 
a transcription factor.

• Collect sequences at the peaks
• Computationally find the motif from these sequences
• This is another version of the motif discovery problem



Motif discovery algorithms
38

• Version 1: Given promoter regions of co-regulated 
genes, find the motif

• Version 2: Given bound sequences (ChIP peaks) of a 
transcription factor, find the motif

• Idea: Find a motif with many (surprisingly many) 
matches in the given sequences



Motif discovery algorithms
39

• Gibbs sampling (MCMC) : Lawrence et al. 1993

• MEME (Expectation-Maximization) : Bailey & Elkan 94. 
(Very popular, visited in today’s lab.) 

• CONSENSUS (Greedy search) : Stormo lab.

• Priority (Gibbs sampling, but allows for additional prior 
information to be incorporated): Hartemink lab.

• Many many others …



Examining one such algorithm
40



The “CONSENSUS” algorithm
41

Final goal: Find a set of “substrings” 
(sites), one in each input sequence

Set of substrings define a motif.
Goal: This motif should have 
high “information content”.

High information content means 
that sites are identical or similar to 
each other



The “CONSENSUS” algorithm
42

Start with a substring in one 
input sequence

Build the set of substrings
incrementally, adding one 
substring at a time

The current set of substrings.



The “CONSENSUS” algorithm
43

The current motif.

Start with a substring in one 
input sequence

Build the set of substrings
incrementally, adding one 
substring at a time

The current set of substrings.



The “CONSENSUS” algorithm
44

Consider every substring in the next sequence, try adding it to 
current motif and scoring resulting motif’s information content

The current motif.

Start with a substring in one 
input sequence

Build the set of substrings
incrementally, adding one 
substring at a time

The current set of substrings.



The “CONSENSUS” algorithm
45

Pick the best one ….

The current motif.

Start with a substring in one 
input sequence

Build the set of substrings
incrementally, adding one 
substring at a time

The current set of substrings.



The “CONSENSUS” algorithm
46

… and repeatPick the best one ….

The current motif.

Start with a substring in one 
input sequence

Build the set of substrings
incrementally, adding one 
substring at a time

The current set of substrings.



Summary so far
47

• To find genes regulated by a TF
• Determine its motif experimentally
• Scan genome for matches (e.g., with FIMO & the LLR 

score)

• Motif can also be determined computationally
• From promoters of co-expressed genes
• From TF-bound sequences determined by ChIP assays
• MEME, CONSENSUS, etc.



Further reading
48

• Introduction to theory of motif discovery
• Moses & Sinha. Regulatory Motif Analysis. 

http://www.moseslab.csb.utoronto.ca/Moses
_Sinha_Bioinf_Tools_apps_2009.pdf

• Das & Dai. A survey of DNA motif discovery 
algorithms. 
http://www.ncbi.nlm.nih.gov/pmc/articles/P
MC2099490/pdf/1471-2105-8-S7-S21.pdf 

http://www.moseslab.csb.utoronto.ca/Moses_Sinha_Bioinf_Tools_apps_2009.pdf
http://www.moseslab.csb.utoronto.ca/Moses_Sinha_Bioinf_Tools_apps_2009.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099490/pdf/1471-2105-8-S7-S21.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099490/pdf/1471-2105-8-S7-S21.pdf


Motif discovery tools
49

• MEME: https://meme-suite.org/
• RSAT: http://rsat.sb-roscoff.fr/ 

https://meme-suite.org/meme/
http://rsat.sb-roscoff.fr/


Associating sequence analysis and 
expression data

50

Image Credit: Nick Youngson / Alpha Stock Images



1. Predict regulatory targets of a TF
51

Motif module: a set of genes predicted 
to be regulated by a TF (motif)

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5

Binding sites for TF



2. Identify dysregulated genes in phenotype of interest
52

Two “subtypes” of patients

Source: DOI:10.1074/mcp.M700487-MCP200

Set of genes differentially 
expressed between the two 
subtypes of patients

http://dx.doi.org/10.1074/mcp.M700487-MCP200


3. Combine motif analysis and gene 
expression data

53

All genes (N)

Genes differentially 
expressed between 

subtypes (n)

Genes regulated by TF
(m)

Is the intersection (size “k”) significantly large, given N, m, n?

Use Hypergeometric test to obtain “p-value”



3. Combine motif analysis and gene 
expression data

54

Infer TF may drive subtypes from “association” between motif and condition

All genes (N)

Genes differentially 
expressed between 

subtypes (n)

Genes regulated by TF
(m)



Useful tools
55

• GREAT: http://bejerano.stanford.edu/great/public/html/
• Input a set of genomic segments (e.g., ChIP peaks)
• Obtain what annotations enriched in nearby genes
• only for human and mouse

• DAVID: https://david.ncifcrf.gov/
• Input a set of genes
• Obtain what annotations enriched in those genes
• Many different species

http://bejerano.stanford.edu/great/public/html/
https://david.ncifcrf.gov/


Quick Break
56



Epigenomics
57

• Where do TFs bind?

• Which genomic segments actively 
regulate gene expression?



Outline
58

• Decorations on the genome

• Experimental assays to profile the decorated genome

• Insights from large scale epigenomics studies



The regulatory genome
59

Source: Genomic Enhancers in Brain Health and Disease. 
Carullo & Day. Genes 2019

https://pubmed.ncbi.nlm.nih.gov/30646598/


How to find enhancers?
60

• Like finding needle in a haystack
• Evolutionary conservation is sometimes used to identify enhancers

• but not all functional elements are conserved at the level that DNA sequence 
alignments can detect. So how do we find regulatory elements?

• More important question is: which enhancers are active 
in a particular cell type?



Regulatory activity leaves its “mark” on 
the genome: epigenomics

61

Image Credit: Ahmed.yosri / Wikimedia Commons



Genomes are complex 3D structures 62

• Comprised of modified and unmodified DNA, RNA and many types of interacting proteins 
• Most DNA is wrapped around a “histone core”. Such wrapped-around DNA is relatively “inaccessible” to other molecules 

such as TFs. But there are “accessible regions” as well, can be detected as “DNase I hypersensitive sites” (DHS)
• TFs bind to their preferred sites (especially in accessible regions), or not
• Histone proteins are ‘marked’ (like flags), or not
• CpG dinucleotides in DNA are methylated, or not

Source: https://www.genome.gov/Pages/Research/ENCODE/Epigenomics_Data_Resource.pdf  

https://www.genome.gov/Pages/Research/ENCODE/Epigenomics_Data_Resource.pdf


Epigenomic clues into regulatory 
activity

63

• Look for accessible regions of DNA, 
that’s where active regulatory 
elements might lie

• Also: specific histone modifications 
and DNA methylation mark 
regulatory activity 

• If you know a particular TF that is 
important for regulation, look for its 
binding sites

Accessible

Not accessible



Experimental assays
64

Image Credit: Nick Youngson / Alpha Stock Images



Chromatin Immunoprecipitation (ChIP) 65

• Antibody to a DNA binding protein is used to “fish 
out” DNA bound to the protein in a living cell
– DNA and protein are crosslinked in the cell using  formaldehyde
– Crosslinked chromatin is sheared, usually by sonication, to yield 

short fragments of DNA+protein complexes
– Antibody to a TF or other binding protein used to fish out fragments 

containing that DNA binding protein
– DNA is then “released” and can be analyzed by sequencing

• Creates a pool of sequences 
enriched in binding sites for a 
particular protein

• Requires availability of excellent 
antibodies that can detect the 
protein in vivo

Source: Collas & Dahl. Frontiers in bioscience (2008). 

https://pubmed.ncbi.nlm.nih.gov/17981601/


• First step is to map reads: BOWTIE, Novalign, BWA or other

• ChIP-seq reads surround but may not contain the DNA 
binding site

• Sequence is generated from the ends of randomly sheared fragments, 
which overlap at the protein binding site

• Gives rise to two adjacent sets of read peaks

• Programs like MACS and HOMER automatically subtract 
your control (genomic input) from sample reads to define a 
final set of peaks

Binding site

ChIP fragments

Seq reads

ChIP computational issues
66



ChIP for histone marks
67

• ChIP-seq can be used to profile not 
only TF binding sites but also histone 
modifications. 

• Data/peak characteristics are different 
depending on what is profiled. 

• TFs are typically sharp peaks; chromatin 
marks are more diffuse

Source: Kungulovski, et al. Epigenomics (2015).

https://www.tandfonline.com/doi/full/10.2217/epi.15.59


All histones in the tetramer have “tails” 
that can be modified in various ways

68

Methylation or 
acetylation of Lysines (K) 
in histone H3 have an 
known effect on 
transcriptional activity

Source: https://www.cs.toronto.edu/~goldenberg/CSC2431/CSC_2431_Machine_Learning_in_Computational_Biology_2015/Schedule_files/Lecture4.pdf 

https://www.cs.toronto.edu/%7Egoldenberg/CSC2431/CSC_2431_Machine_Learning_in_Computational_Biology_2015/Schedule_files/Lecture4.pdf


How to find accessible DNA? 69

The first approach: 
Crawford et al., Genome Research 16:123, 2006 (Francis Collins’ 

laboratory)

Genome-wide identification of DNase I Hypersensitive sites (DHS)

Later variants also based on DNase I treatment, but different 
protocol and different philosophy. 

ChIP-exo, FAIRE-seq, Mnase-seq, ATAC-seq etc. 

 2019 Review covering different methods:

Source: Crawford, et al. Nature methods (2006).

https://www.nature.com/articles/nmeth888


ATAC-seq: approach to open chromatin 70

  (Assay of Transposase Accessible Chromatin sequencing)
• Uses hyperactive Tn5 transposase to cut and tag accessible DNA

• Transposase “jumps” preferentially (and randomly) into accessible chromatin
• Because of the design the transposase breaks DNA where it jumps in, tagging the site with the primer
• Two insertions close together yield fragments of the size amenable for Illumina sequencing

• PCR amplification between primers is all you need to make a library
• Since it skips library-making steps, it can be done with small amounts of chromatin – e.g. 50K vs 1M cells

Source: Buenrostro,  et al. Nature methods (2013).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959825/


General analysis workflow 71

• Upstream Analysis: 
• Alignment, Quality Control, 

and Peak Calling

• Downstream Analysis: 
• Mapping peaks to nearby 

genes (esp. differentially 
expressed genes)

• Identifying enriched motifs

• Overlapping with multi-
omics genome features

Source: Yan, et al. Genome biology (2020).

https://pubmed.ncbi.nlm.nih.gov/32014034/


DNA Methylation
72

• Methyl (-CH3) group added to Cytosine (‘C’)
• CpG (CG dinucleotide) is often methylated
• Methylated CpG may hinder transcription 

factor binding to DNA at that site
• Methylated CpG may recruit proteins that 

render local chromatin less accessible
• Roughly speaking, DNA methylation is 

repressive for gene expression



CpG Methylation profiling 73

• Bisulfite sequencing

Other methods:
• DNA cleavage by 

methylation-sensitive 
restriction enzymes

• Immunoprecipitation with 
methyl-binding protein 

Source: https://en.wikipedia.org/wiki/File:Wiki_Bisulfite_sequencing_Figure_1_small.png



Insights from large-scale epigenomics 
studies

74



Lessons from epigenomics assays 75

• Massive deep-sequencing of multiple chromatin features in cell lines (ENCODE), primary cell types and tissues 
(Epigenetics Roadmap)

• Histone H3 modifications: highlight on H3K4me1, H3K4me3, H3K27Ac, H3K27me3. 
• TFs and other chromatin proteins: e.g. P300 (acetyltransferase)

• H3K4me3 marks are enriched at active promoters
• H3K4me3 marks are largely the same in all cell lines, with a small fraction of marks being cell-specific

• P300, and H3K4me1 is enriched at enhancers
• Most P300 peaks also contain H3K4me1
• P300, H3K4me1 marks are highly cell-type specific
• Most P300 marks are enhancers, but not all enhancers have P300
• Most enhancers have an H3K4me1 mark, not all H3K4me1 marks are in enhancers

• Other marks: H3K27Ac or H3K27me3
• Mutually exclusive marks for open (Ac) versus closed (Me3) chromatin regions
• H3K27Ac may be most general open chromatin mark: promoters and enhancers
• H3K27Ac often found in combination with H3K4 me1/me3 



Application 1: Chromatin “states” 76

• ChromHMM tool combines information from 38 different histone marks, Pol2 
and CTCF profiles to identify different ‘states’

Source: Kundaje, et al. Nature (2015).

https://www.nature.com/articles/nature14248


Application 2: DNA Methylation 
profiles in cancer and aging

77

• DNA Methylation levels can be condition-dependent
• Aberrant methylation patterns in cancer (e.g., 

hypermethylation of tumor suppressors and 
hypomethylation of oncogenes)

• Progressive increase in global methylation levels with 
age. Also aging-correlated hypomethylation at some 
genes.



3D genome
78

Source: Pennisi. Science.org (2015).

https://www.science.org/doi/full/10.1126/science.347.6217.10


Probing 3-dimensional chromatin 
structure with conformation capture

79

Source: Wit & Laat, 2012



Hi-C “output”
80

Heatmap of interactions between all 1 
MB bins along chr1 for GM06990 cells. 

The intensity of red color corresponds to 
the number of Hi-C interactions.



Why is 3D information useful?
81

• The issue is finding out “who is talking to whom?”
• Enhancers can be shared by multiple genes
• Alternative promoters for the same gene can have very 

different regulatory partners
• Position relative to the TSS is not a reliable indicator in 

large vertebrate genomes
• 3D methods are necessary to tie enhancers and 

promoters (genes) together



Summary (epigenomics)
82

• Transcription factor binding sites genome-wide 
• Histone modification profiles (different marks or 

combinations of marks can point to different classes of 
regulatory elements)

• DNA accessibility profiles
• CpG methylation profiles
• Epigenomic profiles are informative about 

gene expression and regulatory mechanisms



Questions ?
83



Regulatory Genomics Lab

1. See Pythonic way to process single cell data on sample 

with both scRNA-seq and scATAC-seq 

2. Look at normalization and signatures for scATAC-seq data

3. Identify differentially accessible peak intervals

4. Search for DNA sequence motifs under peaks
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