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The Importance of Gene Regulation

|




DNA, RNA, Proteins

Gene: a piece of DNA, has the “code” to make a protein

DNA DNA: a long sequence of nucleotides (a,c,g,t)

GENE EXPRESSION

“Transcription”

mRNA mRNA: a physical “copy” of gene

CAN BE REGULATED

Protein protein: molecule with

important functions in cell




Gene Expression Matrix [3000 genes x 619 samples]
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Gene Regulation

* Gene regulation is the process
of turning genes on and off.

1000

1500

Genes

2000

2500 .

* Gene regulation ensures that | |
the appropriate genes are T S B
expressed in the right cells at
the proper times.




Gene Regulation:
fast and slow transcription
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Regulation by Proteins called
Transcription Factors (TFs)

°0
:

BINDING
SITE

Humans have ~2000 TFs




Different cells may have different TFs

TF2 represses gene. TF1 activates gene.
Low gene expression High gene expression
f
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Gene regulation builds bodies
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Different cells occasionally have
different DNA

TF1 binds DNA and activates gene. TF1 cannot bind DNA, doesn’t activate gene.
High gene expression Low gene expression
o ® B .
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Normal cell Tumor cell
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Gene Regulation is disrupted in cancer

Cancer cells

Mormal cells
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Most disease-related mutations are
outside of genes

cases Coniios (impact gene regulation)

Variant with
higher frequency
in cases than

controls

L]
e i -
' .
E .
L]
]
' ' : : 7, I
- oy e | el gk
i o | ai Wil
3 |
. m % % ® = % * 3 = 8 2 I=®R-eeRin

a

Source: https://www.ebi.ac.uk/training/online/courses/gwas-catalogue-exploring-snp-trait-

associations/what-is-gwas-catalog/what-are-genome-wide-association-studies-gwas/
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Gene Regulatory Networks:
TF-gene relationships

/Q c1 Gib Q c1 TF1 activates gene.

b ) GEED Hich gene expression
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Gene Regulatory Networks:
TF-gene relationships

“Gene Regulatory Network” (GRN)




O np-TCF

to 4% - 6B
Cleavage
Endo-Mes
et if T —f:'-
M—vzr| Hnfé

VISR | Repressor

|rict
@ = GSK-3 |yt frizzled

Wnt8

ﬂ. J_LiCI
(1) I GSK-3 e e €€

np-TCF

outside

E

Krl

=[]

SoxBl1

Colored boxes indicate post gastrular domains of expression genes

¢ E(S)?

1 Delm

Maternal
& early
interactions

Interactions

i Su(H}-l-IN

20 [

in definitive
Mesoderm  Endoderm territories
Wats _l;l'_’ } Y *1 v
Rep. of Wnt8
Late Wnt8
T B signal from
i — veg2
l =
H Bra = :“ Hoxh GataE Eve
. ﬂ_.l:’ T
GataC | Eve - FoxB
e | Ui

:‘h 1 Gcm
N
T4y
Notch
Nrl

EpHx,
Ficolin,
Sm37, Sm27,
MSP130L

Sm30

PMC

Cyclophilin, E_!ul'_’

Sm.‘iﬂ :

SuTx

3™ Decorin

FvMo

gt N1l Hngd ' ig

CAPK Dpt Pks

Endomeso up to 20-24 hours

_éﬁi_ __

Hox11/13b

=

Pir 3 i

Apo bec

Kakapo OrCT Gelsolin  Endol6

Vegl
endoderm

Post gastrular
terminal or
peripheral
downstream
genes

14

Genetic regulatory network
controlling the development
of the body plan of the sea
urchin embryo.



GRNs can be reconstructed

computationally
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PLOS BIOLOGY

Quantitative Analysis of the Drosophila Segmentation
Regulatory Network Using Pattern Generating Potentials

Majid Kazemian B, Charles Blatti B, Adam Richards, Michael McCutchan, Noriko Wakabayashi-lto, Ann S. Hammonds,
Susan E. Celniker, Sudhir Kumar, Scot A. Wolfe, Michael H. Brodsky [, Saurabh Sinha [E]
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*Goal: discover the gene regulatory network

*Sub-goal: discover the genes requlated by a
transcription factor
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Genome-wide assays

Scale 100 kb | hg18
chré: | 85,400,004 85,450,000 85,500,000 85,550,000 85,600,000 85,650,000
RefSeq Genes
TBX18 Bt
Txn Factor ChiP | ‘ ] | | |1 || | 1l | | | || |

One experiment per cell type AND PER TF
... tells us which TF might regulate a gene of interest

Expensive |



*Goal: discover the gene regulatory network

*Sub-goal: discover the genes requlated by a
transcription factor

*... by DNA sequence analysis
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The regulatory network is encoded in
the DNA

It should be possible to predict
where transcription factors bind,

by reading the DNA sequence




GCTCCTCAAG
TCCGCTTCTT
GTTAGATGTG
GCTCGCGTCC
TTTAGTGGCG
CATGCCGATC
AGCAGTTTCA
CACTTTAATG
TGCTGCCTTG
TTCGCATTTT
CGGCAACCAC
CACTCACGCT
TAGTCACTCT
TGGAATTTTC
AAGAGTGCCT
CTATTTTTAA
CTGCACATCT
CGCCTTCCTT
CAACTTCTGC
GATTTGTTCG
ATCGCTTCTG
TCGTCGAGCT
CAGCGCCATT
GTTTTCATGT
TCCGTAGCCA
GTTGCCGGCG

TTTTGTCGGT

CTT
CTT
CTT
CTT
CTT
CTT
TTT
TTT
TTT
CTT
CTT
TTT
CCTT
CCTT
CCTT
TTT
TTT
CTTT
TCTT
TT
CTT
CTT
TTT
CTT
CTT
TTT
TTTT

TTTACA TAATCACCGT
TTTACA GTTAGGAATG
TTTACA TAAGCGATAA
TTTACA CAAACGCCCA
TTTACA GGGTTGCAGC
TTTACA CACAAGCATG
TTTACA CACCGGAGTC
TTTACA TCATAAATAA
TTTACA CCAGAATCGA
TTTACT TGCGTCAAAC
TTTATA ACATACAAAC
TTTACT TTCGATAAAG
TTTACA TTTTGAATGT
TTTACA GCTATTATGC
TTTACA CTAACTATTT
TTTATA GGAAATAGGT
TTTATA TTGTAATTGT
TTTACA TTCGTTCTTT
TTTACA CTGACGAATG
TTTACT GGGATCTCGA
TTTATT TCTGGAGTAG
TTTATT TGCTGCCGTC
TTTACG CAACTTTGAT
TTTATT TTTTCTGTGG
TTTATT TGTTTGCCTT
TTTACG GACCCGCGGC
TTTACA ATTCGCTTCC

Motifs and DNA
sequence analysis

20




Finding TF targets
*Step 1. Determine the binding specificity of a TF

*Step 2. Find motif matches in DNA

*Step 3. Desighate nearby genes as TF targets
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Step 1. Determine the binding
specificity of a TF

ACCCGTT
ACCGGTT
ACAGGAT
ACCGGTT
ACATGAT

“MOTIF”

—H|®OO|>

CUT
A=VIA




How?

* SELEX Random DNA pool

P adl
1 DNA pool for next

~ N\
J, L/ cycle selection
@

~
Target protein . ’:l\ ~

® o T
z & PCR amplification

V ad
r~ \4"'\. 7|
| AN
Flowthrough Elution of bound DNAs

Source: http://altair.sci.hokudai.ac.jp/qg6/Projects/Selex-e.html|
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How?

* Protein binding
microarrays

24

TAG

Hybridization

} GGACATGA

Detect bound TF with
fluorophore tagged
antibody

Scan microarray

Source: https://doi.org/10.1093/bfgp/elq023
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Total 1964 profiles MOtif
Databases

Filter:

ID “  Name Species Class Family Sequence logo ° JAS PAR:

* https://jaspar2020.genereg.net/

MADDD1.1  AGL3 Arabidopsis MADS box factors MADS
(oassaa
MAD001.2  AGL3 Arabidopsis MADS box factors f,
thaliana . W ATerdt
MADDD2.1 RUNX1 Homo sapiens Runt domain factors  Runt-related
factors ' rT T T]:
MA0002.2 RUMNX1 Mus musculus Runt domain factors ~ Runt-related
factors ' fT T I
MAD0OD3.1  TFAPZA Homo sapiens Basic helix-span- AP-2
helix factors (bHSH) '

MAD003.2 TFAP2A Homo sapiens Basic helix-span-
helix factors (bHSH)



https://jaspar2020.genereg.net/
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Motif Databases

e TRANSFAC https://genexplain.com/transfac/
* Public version and License version

Cis-BP http://cisbp.ccbr.utoronto.ca/
* Experimentally determined as well as computationally inferred motifs

* Hocomoco: https://hocomocoll.autosome.org/
e Human and mouse motifs

e UniProbe: http://thebrain.bwh.harvard.edu/uniprobe/
 variety of organisms, mostly mouse and human

Fly Factor Survey: https://pgfe.umassmed.edu/ffs/
* Drosophila specific



https://genexplain.com/transfac/
http://cisbp.ccbr.utoronto.ca/
https://hocomoco11.autosome.org/
http://thebrain.bwh.harvard.edu/uniprobe/
https://pgfe.umassmed.edu/ffs/
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Step 2. Finding motif matches in DNA

e Basic idea:

Motif: Match: ACCGGTT
cC ''T Apprx. Match: ACACGTT
1y Al

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

* To score a single site s for match to a motif W, we use

Pr(s|W)
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Whatis Pr (s | W)?

A
5|/0{2|0|0[2[0|A
0[5(3|1{0(0|0|C C
0/{0({0|3|5[|0|0|G ‘
0{0{0|1]0[3|5|T G
T

Now, say s =ACCGGTT (consensus)
Pr(sIW)=1x1x06x06x1x0.6x1=0.216.

Then, say s = ACACGTT (two mismatches from consensus)
Pr(sIW)=1x1x04x0.2x1x0.6x1=0.048.
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Scoring motif matches with “LLR”

* Pr(s | W) is the key idea.

* However, some statistical massaging is done on this.

* Given a motif W, background nucleotide frequencies W, and a site s,
* LLR score of s =

| Pr(s|W)
"5 Pr(s|Wj)

* Good scores > 0. Bad scores < 0.
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https://meme-suite.org/meme/tools/fimo

FIMO scans a set of sequences for individual I i I M O I O I am
F'Mo matches to each of the motifs you provide

(sample output for motifs and sequences). See

‘»"\ o . this Manual or this Tutorial for more
Find Individual Motif Occurences information.

Version 5.0.0

| * Takes motif W, background W, and a

— Data Submission Form |

Scan a set of sequences for motifs. Sequence 5.
Inpuit the mots e Scans every site s in S and computes its

Enter motifs you wish to scan with.

[ Upload motifs C] Choose File No file chosen L L R SCO re .

I"p;;t::‘ :ez:;]nlz: (t):: sselect the database you want to scan for matches to motifs. ° U S e S S O l_J n d Stat i St i CS to d e d u C e a n
Enable tissue/cell-specific scanning [/ a pproprlate p_va I ue) th reshold On the

{ Ensembl Ab Initio Predicted Proteins #} PROTEIN

T e LLR score. All sites above threshold are

v

(@ ol predicted as binding sites.

Input job details
(Optional) Enter your email address.

(Optional) Enter a job description.

[ P> Advanced options ]

Note: if the combined form inputs exceed 80MB the job will be rejected.

Start Search Clear-Input

Version 5.0.0 Please send comments and questions to: meme-suite@uw.edu Powered by Opal

Home Documentation Downloads Authors Citing



https://meme-suite.org/meme/tools/fimo

Finding TF targets
*Step 1. Determine the binding specificity of a TF

*Step 2. Find motif matches in DNA

*Step 3. Desighate nearby genes as TF targets



Step 3: Designating genes as targets

9437k, 2435k, 439k, 9430k, 9431k, 2432k, 433k, 9434k, 3433k, 2436k,

B E E | Predicted genes
CLZI20

P
Sumbol eve: Gadfly CG2325

B E B | plugin:Sequence Motifs
bcd_FlyReg_FB2nBBBBA166 high Ecur%nglnrtif

l[‘ I
Predicted binding sites for motif of TF called “bcd”

Designate this gene as a target of the TF

Sub-goal: discover the genes
regulated by a transcription factor

... by DNA sequence analysis



Computational motif discovery




Why?

* We assumed that we have experimental
characterization of a transcription factor’s binding
specificity (motif)

e What if we don’t?

* There’s a couple of options ...



Option 1

* Suppose a TF regulates five different genes

* Each of the five genes should have binding sites for TF in
their promoter region

- T I Gene 1
- ] Gene 2

/ /F L Gene 3

/ = B Gene 4
1/ ——

V

Binding sites for TF



Option 1

* Now suppose we are given the promoter regions of the five genes
e G1, G2, ...G5

e Can we find binding sites of a TF, without knowing them a priori ?

* This is the computational motif discovery problem

* Find a motif that represents binding sites of an
unknown TF



Option 2

e Suppose we have ChIP-Seq data on binding locations of
a transcription factor.

wn = o A g -
* Collect sequences at the peaks

 Computationally find the motif from these sequences
* This is another version of the motif discovery problem
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Motif discovery algorithms

* Version 1: Given promoter regions of co-regulated
genes, find the motif

* Version 2: Given bound sequences (ChIP peaks) of a
transcription factor, find the motif

* ldea: Find a motif with many (surprisingly many)
matches in the given sequences
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Motif discovery algorithms

e Gibbs sampling (MCMC) : Lawrence et al. 1993

* MEME (Expectation-Maximization) : Bailey & Elkan 94.
(Very popular, visited in today’s lab.)

* CONSENSUS (Greedy search) : Stormo lab.

* Priority (Gibbs sampling, but allows for additional prior
information to be incorporated): Hartemink lab.

* Many many others ...



Examining one such algorithm
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The “CONSENSUS” algorithm

4

Final goal: Find a set of “substrings’
Q (sites), one in each input sequence

N S
Za—
___/

Set of substrings define a motif.

Q Goal: This motif should have
N %

m high “information content”.
~ High information content means

@ that sites are identical or similar to

each other
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The “CONSENSUS” algorithm

Start with a substring in one
— input sequence

— Build the set of substrings
incrementally, adding one
substring at a time

The current set of substrings.
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The “CONSENSUS” algorithm

Start with a substring in one
— iInput sequence

— Build the set of substrings
incrementally, adding one
substring at a time

The current set of substrings.

The current motif.




44

The “CONSENSUS” algorithm

Start with a substring in one
— iInput sequence

— Build the set of substrings
incrementally, adding one

substring at a time
? () () ? The current set of substrings.
) ) )

The current motif.

Consider every substring in the next sequence, try adding it to
current motif and scoring resulting motif’s information content
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The “CONSENSUS” algorithm

Start with a substring in one
— iInput sequence

— Build the set of substrings
incrementally, adding one
substring at a time

The current set of substrings.

The current motif.

Pick the best one ....
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The “CONSENSUS” algorithm

Start with a substring in one
— input sequence

— Build the set of substrings
incrementally, adding one
substring at a time

The current set of substrings.

The current motif.

Pick the best one .... ... and repeat
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Summary so far

* To find genes regulated by a TF
e Determine its motif experimentally

e Scan genome for matches (e.g., with FIMO & the LLR
score)

* Motif can also be determined computationally
* From promoters of co-expressed genes

* From TF-bound sequences determined by ChIP assays
* MEME, CONSENSUS, etc.
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Further reading

* Introduction to theory of motif discovery

* Moses & Sinha. Regulatory Motif Analysis.
http://www.moseslab.csb.utoronto.ca/Moses
Sinha Bioinf Tools apps 2009.pdf

* Das & Dai. A survey of DNA motif discovery
algorithmes.
http://www.ncbi.nlm.nih.gov/pmc/articles/P
MC2099490/pdf/1471-2105-8-S7-S21.pdf



http://www.moseslab.csb.utoronto.ca/Moses_Sinha_Bioinf_Tools_apps_2009.pdf
http://www.moseslab.csb.utoronto.ca/Moses_Sinha_Bioinf_Tools_apps_2009.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099490/pdf/1471-2105-8-S7-S21.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099490/pdf/1471-2105-8-S7-S21.pdf

Motif discovery tools

* MEME: https://meme-suite.org/
* RSAT: http://rsat.sb-roscoff.fr/



https://meme-suite.org/meme/
http://rsat.sb-roscoff.fr/

Associating sequence analysis and
expression data
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1. Predict regulatory targets of a TF

Motif module: a set of genes predicted
to be regulated by a TF (motif)

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5

=
.T//f'
4

Binding sites for TF

1L




2

2, Identify dysregulated genes in phenotype of interest

Two “subtypes” of patients

Set of genes differentially
expressed between the two
subtypes of patients



http://dx.doi.org/10.1074/mcp.M700487-MCP200
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3. Combine motif analysis and gene
expression data

All genes (N)

Genes regulated by TF
(m)

Genes differentially
expressed between
subtypes (n)

Is the intersection (size “k”) significantly large, given N, m, n?

Use Hypergeometric test to obtain “p-value”
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3. Combine motif analysis and gene
expression data

All genes (N)

Genes regulated by TF
(m)

Genes differentially
expressed between
subtypes (n)

Infer TF may drive subtypes from “association” between motif and condition
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Useful tools

* GREAT: http://bejerano.stanford.edu/great/public/html/
* Input a set of genomic segments (e.g., ChIP peaks)
* Obtain what annotations enriched in nearby genes
e only for human and mouse

* DAVID: https://david.ncifcrf.eov/

* Input a set of genes
e Obtain what annotations enriched in those genes
* Many different species



http://bejerano.stanford.edu/great/public/html/
https://david.ncifcrf.gov/

Quick Break
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Epigenomics

* Where do TFs bind?

* Which genomic segments actively
regulate gene expression?
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Outline

* Decorations on the genome
* Experimental assays to profile the decorated genome

* Insights from large scale epigenomics studies
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The regulatory genome
enhancer / R

transcription factors
chromatin modifiers
Mediator complex

E Source: Genomic Enhancers in Brain Health and Disease.


https://pubmed.ncbi.nlm.nih.gov/30646598/
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How to find enhancers?

* Like finding needle in a haystack

e Evolutionary conservation is sometimes used to identify enhancers

TCFE7L2
F7L2

=l it
e
QooOooOoOOoOOO0

L l v 7 - 71—'250_13’3
l | I“l.\ﬂhM A M i A Ji}. b AJ.III J\ gﬁlam
TR | TN T W T Y
m.ﬂ]“”’z

* but not all functional elements are conserved at the level that DNA sequence
alignments can detect. So how do we find regulatory elements?

E- More important question is: which enhancers are active

in a particular cell type?



Regulatory activity leaves its “mark” on
the genome: epigenomics

J




Genomes are complex 3D structures

Comprised of modified and unmodified DNA, RNA and many types of interacting proteins

Most DNA is wrapped around a “histone core”. Such wrapped-around DNA is relatively “inaccessible” to other molecules
such as TFs. But there are “accessible regions” as well, can be detected as “DNase | hypersensitive sites” (DHS)

TFs bind to their preferred sites (especially in accessible regions), or not

Histone proteins are ‘marked’ (like flags), or not

CpG dinucleotides in DNA are methylated, or not

Modifications

https://www.genome.qov/Pages/Research/ENCODE/Epigenomics Data Resource.pdf

62


https://www.genome.gov/Pages/Research/ENCODE/Epigenomics_Data_Resource.pdf
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Epigenomic clues into regulatory

activity
* Look for accessible regions of DNA, ARy ATACN
that’s where active regulatory Not accessible DNA | [sones

: : strand TR PR .
elements might lie OX proteins

e L - : Expanded chromatin
 Also: specific histone modifications ?

and DNA methylation mark
regulatory activity

Accessible

* If you know a particular TF that is
important for regulation, look for its
binding sites



Experimental assays
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Chromatin Immunoprecipitation (ChIP)

N * Antibody to a DNA binding protein is used to “fish
SN out” DNA bound to the protein in a living cell

— DNA and protein are crosslinked in the cell using formaldehyde

¥ Cell lysis
* — Crosslinked chromatin is sheared, usually by sonication, to yield
_— short fragments of DNA+protein complexes
ﬂ;d.: L — Antibody to a TF or other binding protein used to fish out fragments
/ e \ v containing that DNA binding protein
~ A~ ) . — DNA is then “released” and can be analyzed by sequencing
NPT 2970
DN~ ]
' P * Createsa pOO| of sequences
- ::1":;:“ enriched in binding sites for a
e oy particular protein
v DNA purification i . .
== * Requires availability of excellent
P T Voo o antibodies that can detect the
- !.:ﬂ'f'lﬁll'll'"I . . .
LUM protein in vivo

Sequencing

Microarray
~ Collas & Dahl. Frontiers in bioscience (2008).



https://pubmed.ncbi.nlm.nih.gov/17981601/
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ChIP computational issues

« First step is to map reads: BOWTIE, Novalign, BWA or other

Tag parcantags (%)

« ChlIP-seq reads surround but may not contain the DNA

binding site e A
Sequence is generated from the ends of randomly sheared fragments, memm”“,‘if?"“dj_mm _
which overlap at the protein binding site - Inaing site

Seq reads —
%
« Gives rise to two adjacent sets of read peaks ChlP fragments %%

* Programs like MACS and HOMER automatically subtract
your control (genomic input) from sample reads to define a
final set of peaks



Kungulovski, et al. Epigenomics (2015). 67

ChiP

ChIP for histone marks

* ChIP-seq can be used to profile not 1 = >’
only TF binding sites but also histone .
modifications.

* Data/peak characteristics are different %zﬁ —
depending on what is profiled. =

* TFs are typically sharp peaks; chromatin
marks are more diffuse


https://www.tandfonline.com/doi/full/10.2217/epi.15.59
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All histones in the tetramer have “tails”
that can be modified in various ways

acetvlation Methylation or
Ac t}’ acetylation of Lysines (K)

in histone H3 have an

. known effect on
Me mEth}flﬂtlﬂll transcriptional activity

Ub| ubiquination

SU | sumoylation

p| Phosphorylation

https://www.cs.toronto.edu/~goldenberqg/CSC2431/CSC 2431 Machine Learning in Computational Biology 2015/Schedule files/Lecture4.pdf



https://www.cs.toronto.edu/%7Egoldenberg/CSC2431/CSC_2431_Machine_Learning_in_Computational_Biology_2015/Schedule_files/Lecture4.pdf

How to find accessible DNA? )

DMA binding
proteins

nuclecsome \ ewiTR,
‘xﬁ -, 'III')}\ : I'__
) ) Y
A l._;:r G - )j -_'i
) = 'rxf'.', 4
’ - '~’_,_:' DMase HS
AL sites =

Gene tn

_:_.-"--.-:IJ{.__‘ _‘.l:'
wa &
1) Digest wath DMNase and blunt end = 1l

DMase HS sile

+EII Ligate iobinylated inkers

[ B—
—f I |

*33 Sonicate to shear DNA
|

B s e s s—
" e

+4?- Enrich on Streptavidin column

| | B__
— - EE—

¢ 5) Add second linkers, amplify

Label and Hybridize to Tiled Arrays
Raw DNase-chip data ||, |10l ] s,

! 88,131,000 45,122,000 148,133,000 148,134,000

OR
Sequence Using Solexa Platform

|Di'h'ase-sequen:es [ll ||
L L I . L. L' MR L - PR o L. s

......

Crawford, et al. Nature methods (2006).

The first approach:

Crawford et al., Genome Research 16:123, 2006 (Francis Collins’
laboratory)

Genome-wide identification of DNase | Hypersensitive sites (DHS)

Later variants also based on DNase | treatment, but different
protocol and different philosophy.

ChIP-exo, FAIRE-seq, Mnase-seq, ATAC-seq etc.

2019 Review covering different methods:

Chromatin accessibility and the regulatory epigenome

Sandy L. Klemm, Zohar Shipony & William J. Greenleaf &3

Nature Reviews Genetics 20, 207-220 (2019) | Cite this article


https://www.nature.com/articles/nmeth888

ATAC-seq: approach to open chromatin

(Assay of Transposase Accessible Chromatin sequencing)
Uses hyperactive Tn5 transposase to cut and tag accessible DNA
Transposase “jumps” preferentially (and randomly) into accessible chromatin
Because of the design the transposase breaks DNA where it jumps in, tagging the site with the primer
Two insertions close together yield fragments of the size amenable for lllumina sequencing
PCR amplification between primers is all you need to make a library

Since it skips library-making steps, it can be done with small amounts of chromatin — e.g. 50K vs 1M cells

Closed
chromatin \

chromatin
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959825/

General analysis workflow

Upstream Analysis:
Alignment, Quality Control,
and Peak Calling

Downstream Analysis:
Mapping peaks to nearby
genes (esp. differentially
expressed genes)

ldentifying enriched motifs

Overlapping with multi-
omics genome features
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Pre-analysis
I |
Pre-alignment QC Alignment Post alignment processing & QC
Remaove duplicated / low quality / miDNA reads f black listed regions
Seqguence guality B ; LR
= - i B
GG content Unigue mapping % i e (R | L T
Duplication Duplicated reads % i T B
Length distribution Fragment length = ™ S| & Shiftreads &
K-mer distribution ? Tor el RN
Mapiﬂr GC bhias - : # g = E _! i
Fragmani lengi (aj 1 Prakion (be
Fragment length distribution TSS enrﬁmenl
Core analysis Advanced analysis
1
Peak calling Peak differential analysis Footprinting analysis
- Peak based or slide-window D novo or motif-centric
mﬂ'lq'ﬁ Consensus peaks Supervised or unsupervised 4
111 11 | Paak shape information Bias correction
|—JJL—M—M— Nucleosome positioning

Count or shape based \J A All or nucleosomal fragmaents ==

Mo input control Peak annotation Motif enrichment analysis Low coverage beyond peaks
Paired-and or shift-axtend
TnS bias Enriched pathways > Motif dalabase
Replicates Visualizaticn Overreprasentation or molif activity

Integration with multiomics data
I 1
Integration with ChiP-seq Integration with RNA-seq Regulatory network reconstruction

Integrate with TF ar
histone marker ChiP-seq

Cwarlap DEGs and differential paaks
Regression (sxpression — accessibiliy)

Mondirectional (ChiP-seq) or directional (RNA-s2q)

-
Enhancer promofer interaction

Yan, et al. Genome bioloqy (2020).



https://pubmed.ncbi.nlm.nih.gov/32014034/
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DNA Methylation

* Methyl (-CH3) group added to Cytosine (‘C’) L NH,

* CpG (CG dinucleotide) is often methylated ﬁlo | ;JLO

* Methylated CpG may hinder transcription yosine meth:ated
factor binding to DNA at that site —

* Methylated CpG may recruit proteins that

render local chromatin less accessible

* Roughly speaking, DNA methylation is
repressive for gene expression



CpG Methylation profiling

Allele 1 (methylated) Allele 2 (unmethylated)
m
-==ACTCCACGG---TCCATCGCT—-- -==ACTCCACGG---TCCATCGCT---
———TGAGGTGEC———&GGT&G%FH——— ---TGAGGTGCC---AGGTAGCGA---

Bisulfite treament
Alkylation
Spontaneous denaturation

Y
-==AUTUUAUGG==--TUUATCGUT=--- -=-=AUTUUAUGG=---TUUATUGUT ===

-==-TGAGGTGUU---AGGTAGCGA--- -=-=-TGAGGTGUU---AGGTAGUGA---

\/

MNon-methylation-specific PCR
Methylation-specific PCR

:

Differentiation of bisulfite-generated polymorphisms

* Bisulfite sequencing

Other methods:

* DNA cleavage by
methylation-sensitive
restriction enzymes

* Immunoprecipitation with
methyl-binding protein
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Insights from large-scale epigenomics
studies

plgenomlcs

PROJECT




Lessons from epigenomics assays

Massive deep-sequencing of multiple chromatin features in cell lines (ENCODE), primary cell types and tissues
(Epigenetics Roadmap)

* Histone H3 modifications: highlight on H3K4mel, H3K4me3, H3K27Ac, H3K27me3.
* TFs and other chromatin proteins: e.g. P300 (acetyltransferase)
H3K4me3 marks are enriched at active promoters
 H3K4me3 marks are largely the same in all cell lines, with a small fraction of marks being cell-specific

P300, and H3K4me1l is enriched at enhancers
* Most P300 peaks also contain H3K4mel
* P300, H3K4mel marks are highly cell-type specific
* Most P300 marks are enhancers, but not all enhancers have P300
* Most enhancers have an H3K4mel mark, not all H3K4mel marks are in enhancers

Other marks: H3K27Ac or H3K27me3
e Mutually exclusive marks for open (Ac) versus closed (Me3) chromatin regions
 H3K27Ac may be most general open chromatin mark: promoters and enhancers
 H3K27Ac often found in combination with H3K4 mel/me3

75



Application 1: Chromatin “states”

e ChromHMM tool combines information from 38 different histone marks, Pol2
and CTCF profiles to identify different ‘states’

a b

Chromatin state Abbreviation emissions {l‘mr Annutatmn mreriap E:-tpr Hepr.

15 Quiescent/low 57.8%
2288 Fo cfeNoRog o gan
Halatimmﬁchmmlégééﬁ §E§§EEE§E§§}§EEEEE
w5 ch- T L P - R
T EEoEy gt S g gue2B.88

Kundaje, et al. Nature (2015).



https://www.nature.com/articles/nature14248
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Application 2: DNA Methylation
profiles in cancer and aging

* DNA Methylation levels can be condition-dependent

e Aberrant methylation patterns in cancer (e.g.,
hypermethylation of tumor suppressors and
hypomethylation of oncogenes)

* Progressive increase in global methylation levels with
age. Also aging-correlated hypomethylation at some

geNEeS. FrontBioinform. 2022; 2: 847629,
Published online 2022 Jun 2. doi- 10 3389/fbinf 2022 847629

DNA Methylation, Aging, and Cancer Risk: A Mini-Review

Larry Chen, 1 Patricia A Ganz, 2+ *and Mary E. Seh® 2 4’
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3D genome

Source: Pennisi. Science.org (2015).



https://www.science.org/doi/full/10.1126/science.347.6217.10

Probing 3-dimensional chromatin
structure with conformation capture

crosslink igest crosslinked ligation reverse crosslinking
chromatin chromatin
— —> k 4 |
0< ; H H H




Hi-C “output”

chrl

N IEN Tl BRI T I NI NI T T NIT

s
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Hi-C: A comprehensive technique to capture the
conformation of genomes
Jon-Matthew Belton.1 Rachel Patton McCord.1 Johan Gibcus,1 Natalia Naumova,1
Ye Zhan,1 and Job Dekker!""

Heatmap of interactions between all 1
MB bins along chrl for GM06990 cells.

The 1ntensity of red color corresponds to
the number of Hi-C interactions.
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Why is 3D information useful?

* The issue is finding out “who is talking to whom?”
* Enhancers can be shared by multiple genes

 Alternative promoters for the same gene can have very
different regulatory partners

e Position relative to the TSS is not a reliable indicator in
large vertebrate genomes

* 3D methods are necessary to tie enhancers and
promoters (genes) together
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Summary (epigenomics)

* Transcription factor binding sites genome-wide

* Histone modification profiles (different marks or
combinations of marks can point to different classes of
regulatory elements)

* DNA accessibility profiles
* CpG methylation profiles

* Epigenomic profiles are informative about
gene expression and regulatory mechanisms
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Questions ?




Regulatory Genomics Lab

1. See Pythonic way to process single cell data on sample

with both scRNA-seq and scATAC-seq
2. Look at normalization and signatures for scATAC-seq data
3. ldentify differentially accessible peak intervals

4. Search for DNA sequence motifs under peaks
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