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Characteristics of microbiome data
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Data characteristics

@ High-dimensional counts
with variable library sizes

@ Overdispersion, excessive
zeros and outliers

@ Phylogeny and
hierarchical structure

@ Compositional effects
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Multi-level summarization of

microbiome data

@ Raw count data

o OTU/ASV level
e Different taxonomic level

@ Normalized/Proportion data

o OTU/ASV level
o Different taxonomic level

@ Diversity (community-level) data

e «a-diversity
o [-diversity
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Information ++++

normalized/proportion data
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Diversity measures quantify community-
level properties

@ «-diversity: a measure of within-sample diversity (richness and evenness)

e Not dependent on the composition of other samples
o Sobs, Chaol, Shannon, Simpson, Phylogenetic diversity (PD)

@ [J-diversity: a measure of between-sample diversity in terms of pairwise ecological

distances
e Measures how different one community is to another
e Bray-Curtis, Jaccard, UniFrac distance B @
@ Can be split along two major axes: @‘/
e Unweighted vs. weighted measure \ fp
e Phylogenetic vs. Non-phylogenetic measure B
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Each diversity measure captures a different
aspect of the community properties

@ Unweighted measure - community membership/structure;
Weighted measure - community compositional profile;

@ Unweighted measure also puts more emphasis on
rare/low-abundance species than weighted measure

@ Phylogenetic measure captures “clustered” signals

£'4
@ It is important to study several representative diversity 22 §
measures to have a full view of the community
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Each diversity measure captures a different
aspect of the community properties

Site 1 Site 2

K PAR L1 XY samoevermess

(B ) He D D e e (Sobs, Chao1)

¥ & % 5 & Same richness,
B % % 7\{? 7}/? % ;fT 7}; ;f? different evenness

‘ & Shannon, Simpson
VD VI e e ¥ Ypome pson)
% ¥ F % % j? \f Same richness,
C % f\ﬁ 7}? * N\ /¥ W\ same evenness,
5 & x & different phylogeny
7\{? . \'wéﬁ" 7{ ;f\ A )* (Phylogenetic diversity)
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UniFrac distance (Knight group) captures
phylogenetically related community difference

Unweighted UniFrac(dV): the fraction of the branch length of the tree that
is unique to each community/microbiome sample.

B.Related se.que_nce sets:seqsinred | C.Unrelated sequencesgtszsgqsin L. . .
roverstiesnble 0% | redbaverecoseeaivesinoie] @ Most efficient in detecting the |
UniFrac score = 0.5. -%= UniFrac score = 1. ‘%E dlfference in Communlty memberShlp
u
u o
] L= 1 = @ Also difference in rare lineages, differs
u o oo o -
i -%: in probability of being picked up by
u o z
A . B = the sequencing machine
] M

Weighted UniFrac(d"): branch length weighted by proportion difference

Weighted UniFrac:
branch lengths weighted by difference in red and blue
=ass mmmm | @ Most efficient in detecting difference
e i in abundant lineages
=- .- g
o == :
- - @ Absolute difference puts too much
:° weight on abundant lineages
s H

Bray-Curtis/Jaccard distances are UniFrac equivalents without using phylogeny.

Lozupone, C., & Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial
communities. Applied and environmental microbiology, 71(12), 8228-8235.
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Diversity depends on the sampling effort
(sequencing depth)
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As we sequence more deeply, we will detect more rare species.
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Differential sequencing depth could
produce false patterns

Alpha-diversity

Species richness (unrarefied) Species richness (unrarefied)

Depth differs by 2 folds Depth differs by 10 folds
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Diversity measure and rarefaction

e To conduct a fair comparison of diversity
measures, esp. for unweighted measures, the
sequencing depth should be equal. The process
of down-sampling the sequences to the same
depth is called rarefaction.

D
o
1

Observed
8

20+
Group

-O- healthy

e \We usually down-sample the sequences at J < sibo_patent
different depths and create a rarefaction curve. T T
The rarefaction curve can be used to assess the
adequacy of the sampling depth.

H—O—O—O—O—O—O—0—0

e Unless rarefied to a very low depth, rarefaction 25
does not lose much statistical power for diversity
analysis. It could even increase the power for
unweighted analysis. 201
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Rarefaction corrects the false pattern
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Rarefaction corrects the false pattern
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Central themes of microbiome studies
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Hall, A. B., Tolonen, A. C., & Xavier, R. J. (2017). Human genetic variation and the gut microbiome in disease. Nature Reviews Genetics, 18(11), 690-699.

Warnecke, F., & Hugenholtz, P. (2007). Building on basic metagenomics with complementary technologies. Genome biology, 8, 1-5.
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Input

[EEY

. OTU count table
. Meta data table
3. OTU Tree

N

[EEY

. Primary variable
. Adjusted variables
3. Subject variable

N

1. Sample/OTU filtering
2. Module parameters
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Modules

Exploratory data analysis

a-diversity analysis

B-diversity analysis

Taxon-level analysis

Function-level analysis

Predictive modeling

Subtype analysis

Network analysis

1343 3§ 83 3

Output

Statistics

Visualization

Sequence summary stats
Meta-data summary stats
Taxonomy summary stats

OTU/taxa Heatmap;
Stacked/individual taxa
Barplots; Ordination plots

a-diversity association:
Linear model and Linear
mixed effects model

Rarefaction curves;
Diversity comparison
plots

B-diversity association:
Distance-based methods;
Kernel-based methods

Ordination plots (MDS,
NMDS); Distance
comparison plots

Differential abundance
tests: Univariate tests
(Normalization, outlier,
transformation) and
multiple testing

Abundance comparison
plots; Prevalence
comparison plots;
Scatterplot; Effect size
plots; Heatmap; Biplot;

correction;Joint tests and | Cladograms
variable selection
Random forests Classification/prediction

Sparse regression model
Kernel regression model

error plots; Feature
importance plots; ROC

Distance-based clustering
Model-based clustering
Cluster association tests

Cluster assessment plots;
Cluster-taxa plots;
Ordination plots

Co-occurrence network;
Correlation network;
Dynamic network analysis

OTU/Taxa network;
OTU/Taxa-Sample
network
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Exploratory data analysis

@ Various visualizations through heat map, ECHs) A
stacked bar plot, PCoA plot, cladogram

@ Exploratory data analysis can

o Detect outlier samples/features

e Understand sources of variability,
particularly batch effects

e Detect contaminants by comparing to
negative controls

e Form hypotheses for statistical testing

@ Two interactive tools

o EMPeror (Vzquez-Baeza, et al., 2013,
GigaScience): PCoA plot-based.

o Calour (Xu et al., 2019, mSystems):
heat map-based.

s 5 s
Experimental category

plate1 plate2

IS

Lo o -
Experimental category Extraction plate

Xu, Z. Z., et al. (2019). Calour: an interactive, microbe-centric analysis tool. Msystems, 4(1), 10-1128.

Vazquez-Baeza, Y., et al. (2013). EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience, 2(1), 2047-217X.
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Exploratory data analysis (examples)

100%

75%

Relative abundance

25%-

0%
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50%

Healthy volunteers (Low PA).Fecal Slurry

PI-IBS (Low PA).Fecal Slurry

PI-IBS (High PA).Fecal Slurry

Healthy volunteers (Low PA).4 wks

PI-IBS (Low PA).4 wks

PI-1BS (High PA).4 wks

Healthy volunteers (Low PA).6 wks

PI-IBS (Low PA).6 wks

PI-1BS (High PA).6 wks

Family

| Akkermansiaceae
Bacteroidaceae

| Barnesiellaceae

[ Bifidobacteriaceae

[l Clostridiaceae

| Eggerthellaceae
Enterobacteriaceae
Erysipelotrichaceae
Eubacteriaceae

[ Lachnospiraceae
Methanobacteriaceae
Oscillospiraceae
Prevotellaceae

M Rikenellaceae
Ruminococcaceae

B Streptococcaceae

| Tannerellaceae

B Unknown
Veillonellaceae

[ Others

©2012 MFMER

Healthy volunteers (Low PA).Fecal Slurry

PI4BS (High PA) Fecal Slurry

PI-IBS (Low PA).Fecal Slurry

PIIBS (High PA).4 wks

PI-IBS (High PA).6 wks

Healthy volunteers (Low PA).4 wks

Healthy volunteers (Low PA).6 wks

PIIBS (Low PA).4 wks

PI-IBS (Low PA).6 wks

Bactercdes_stercons
Clostridium_sp._KLE_1755
Bamesela_ntessnhominis.
Alistipes_finegoldi
Butyriomonas_wrosa
Biophia_wadsworthia
Bactkecoides_fraghts

uceus

Escherichia_col
ubacterium]_rectaie

Oscilbacter_sp. KLE_1745
[(Ruminococcus]_torques.
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Exploratory data analysis (examples)

MAYO

.’..:04
0.1 P )
e o o s ° \" . .
e et e Time
T ] o o
g s . b * 6wks
o 0.0 R « e, . 4+ Fecal Slurry
:' “‘ ° P . . °
A .‘ ...
« & PA Status
o 0.1 e ot *  Healthy volunteers
z - PI-IBS (High PA)
* PI-IBS (Low PA)
-024 * i
-0.4 -0.2 0.0 0.2

Axis.1 [26.8%]

Center for INDIVIDUALIZED MEDICINE

- .1 l?‘\::
l \i
T u
T

CLINIC

¥

Y

©2012 MFM




Microbiome association test

@ Individual taxon vs community-level test

@ Community-level test to establish an overall association

o a-diversity: close to normal, linear (mixed) model can be applied
o [-diversity: PERMANOVA and MiRKAT (Zhao et al., 2015, AJHG)

o ldea: compare microbiome similarity to phenotype similarity

o PERMANOVA: distance-based regression with the microbiome as the outcome
e MiRKAT: kernel machine regression with the microbiome as the covariate

@ More powerful methods are under development.

@ Individual taxon testing to identify specific taxa (differential abundance analysis)

e Many methods are available but no consensus exists!
e Multiple testing correction must be performed!!

| Case samples ‘ Control samples [ faesltacen
Taxonl |ec11 €12 -+ Cim | Clum4l Clme2 - Cln
Taxon 2 | co1 €22 -+ com | C2mel C2mi2 0 C2n
Taxon q Cqgl Cq2 - Cgm | Cgm+1l Cgm+2 " Cgn )
Library size | s1  s9 -+ Sm | Sme1 Sma2 Sy : A

"y
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Multiple testing correction

e Assume we are testing 500 taxa, if we use the traditional type | error cutoff
0.05, by definition, we will detect an average of 25 differential taxa while none
are truly differential!!

e P-values should be corrected for multiple testing.

e Family-wise error rate (FWER) control (e.g. Bonferroni correction) controls the
probability of making any false discovery in the results. May be too conservative.

e False discovery rate (FDR) control (e.g. Benjamini-Hochberg procedure) controls
the average percentage of false discoveries in the results. Balance of power and

false positives.
positives (blue) and false

QIDPP O ~-
positives (yellow) on six example

. ‘ ® /A FWER 0.05 datasets by using unadjusted,
FWER-adjusted, and FDR-

adjusted p-values at 0.05 level.

The size of the circle represents
‘ ‘ 0 “ ‘ /A FDR 0.05 the number of discoveries made.

Left shows the proportion of true
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Challenges of differential abundance analysis

e Microbiome sequencing data are “compositional”: the change of the
abundance of one taxon will lead to the changes of the relative
abundances of other taxa

@ The severity of compositional effects depends on the number of
differential taxa, their abundance level, and the direction of change

MAYO
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Before treatment After treatment
Species1| 60 60% [ —> | 160 80%
Species2| 9 5% 5 2.5%
Species3 10 10% 10 5%
Species4| 5% 5 2.5%
Species5| 20 20% 20 10%
Total 100 100% 200 100%

The “relative” abundances (relative to the total sum) are

changed for all species!




Assumption for differential abundance
analysis based on relative abundance data

Before treatment After treatment

Species1 60% 80%
Species2 5% 2.5%
Species3 10% 5%

Species4 5% 2.5%
Speciesb 20% 10%

Absolute abundance

Before After Before After Before After
60 160 60 1600 60 60

5 5 5 50 5 1.875

10 10 10 100 10 S5

5 5 5 50 5 1.875
20 20 20 200 20 15
One differential Five differential Four differential

MAYO Center for INDIVIDUALIZED MEDICINE
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Approaches to address compositional effects

@ Select a suitable “divisor”

o Use some robust normalizing factor (CSS, GMPR, CLR, etc.) to
capture the sequencing effort of the non-differential part (sparse signal)

e Find a single or a set of reference taxa, which are assumed to be
relatively invariant with respect to some condition (DACOMP, RAIDA,

ZicoSeq)

@ Bias correction (ANCOM-BC, LinDA, fastANCOM)

Yang, L., & Chen, J. (2022). A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions. Microbiome, 10(1), 130.
Zhou, H., He, K., Chen, J., & Zhang, X. (2022). LinDA: linear models for differential abundance analysis of microbiome compositional data. Genome biology, 23(1), 95.

Lin, H., & Peddada, S. D. (2020). Analysis of compositions of microbiomes with bias correction. Nature communications, 11(1), 3514.

Center for INDIVIDUALIZED MEDICINE
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A non-exhaustive list of existing
differential abundance analysis methods

Method Model Address compositional effects Handling zero Covariate
DESeq?2 Negative binomial model Scale factor (RLE) Model (Overdispersion) Yes
edgeR Negative binomial model Scale factor (TMM) Model (Overdispersion) Yes

Zero-inflated log-normal model selCifactor ) )
metagenomeSeq (CSS/Wrench) Model (Zero-inflation) Yes/No

RAIDA Zero-inflated log-normal model Reference Model (Zero-inflation) No
ANCOM Wilcoxon Pairwise log ratio Pseudo-count No
ANCOM-BC Log linear model Bias correction Pseudo-count Yes
fastANCOM Log linear model Bias correction Pseudo-count Yes
LinDA Log linear model Bias correction Pseudo-count Yes
MaAsLin2 Log linear model Scale factor Pseudo-count Yes
DACOMP Wilcoxon Reference Not neccesary No
ZINQ Logistic+quantile regression Scale factor Model (Logistic) Yes
LDM Linear model Scale factor (TSS) Not necessary Yes
ZicoSeq Linear model Reference Empirical Bayes Yes

MicrobiomeDDA Scale factor (GMPR)

(mbzinb) Zero-inflated negative binomial model Model (Zero-inflaton) Yes

Aldex2 Wilcoxon/t test/glm Scale factor (CLR) Empirical Bayes Yes
Beta-binomial (Corncob) beta-binomial model Scale factor (TSS) Model (Overdispersion) Yes
eBay Wilcoxon/t test Scale factor (CLR) Empirical Bayes No

MAYO
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LinDA: linear models for differential abundance
analysis with bias correction (Zhou et al., 2022,
Genome Biology)

https://cran.r-project.org/web/packages/MicrobiomeStat/

True model based on absolute abundance X

|0g (Xis) = usa; + (17 c;r)ﬂi + €is,

where us is the variable of interest, cs are covariates, and ¢;s is the error term.

| A

Model based on CLR-transformed relative abundance Y

Wis : = log _ Ve L log X
. (TT7Zy Yjs)t/m (T2, Xjo)t/m
1 m
= log(Xis) — p Z log(Xjs)
j=1

= us (o — @) + (1,€] ) (B; — B) +&is — &

where a =m 1YY" o), B=m 13" Biand & =m 13T e

The OLS estimator for a based on the CLR-transformed data is biased with the bias term being a.
LinDA estimates the bias and performs inference based on the de-biased estimate.

.

IR A {
T ,
1P -
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Microbiome-based prediction with Random
Forest algorithm

e Algorithm based on decision trees with bootstrap
samples and splitting on a random set of features

e Advantages

Capture nonlinear effects

Capture interaction between taxa

Can accommodate a large number of taxa
Robust to outliers

Provide importance rank of the taxa

Can couple with Boruta feature selection to
identify biomarker taxa

Out-of-bag (OOB) error gives a reasonable
error estimate (may overestimate)

® Important parameters

MAYO
CLINIC
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Number of trees (default may be small)

Number of features to split (default is usually
OK)

Random Forest
O
Class 2
O Class 1 O

O O O O O Class 1

Class 1

® 0 O
),

C
S

Class 1 A) A
m Class 1 © 0 000

Class 2 Class 1

https://towardsdatascience.com/from-a-single-
decision-tree-to-a-random-forest-b9523be65147

Center for INDIVIDUALIZED MEDICINE

F | 4
T 3 'I
o X



https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-b9523be65147
https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-b9523be65147

Microbiome-based prediction -

considerations
e What input to Random Forest? P 'X‘}
e Taxonomic or original OTU/ASV abundance W 4
e Whether to incorporate phylogenetic information ;g 3@
e Taxonomic or functional abundance >y 8 =)
e How to normalize the data PG Ak
o Whether to perform feature filtering and selection ./{:\/:\, ;

e Performance evaluation by cross-validation (CV)

MAYO
CLINIC
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If all the parameters are set as default, OOB error or traditional CV can
be used to evaluate prediction performance.

If we tune the parameters and perform feature filtering/selection, two-
stage nested CV should be used.

Feature filtering/selection should be performed in the training data only.




Nested cross-validation for objective
assessment of prediction performance
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mPower: a power calculation tool for
microbiome study design

mPower: A Real Data-based Power Analysis Tool for Microbiome Study Design

mPower

. o ) You choose from the interface Interface returns
Estimate the power for microbiome data analysis

Microbiome Data Characteristics.

Experiment Design

mPower Components
Case-Control

Community-level Power

i
: '
: '
: '
Effect Size Examples ‘ 1 Cross-Sectional i
1 Matched-Pair ' P max log2 fold change=2 ]
] a :
1 Type of Test : 09
o 1 Community-level power test ' 508
. - L} [
Run Power Analysis @ : Taxon-level power test 3
1 Alpha level 0.1
Step 1: Select a design: : 06
Soil I e . : ' 9 %0 0 60
o e ' Differential Taxa Setting . Sample size
§ Y '@ -® 1 Abundance of differential taxa H
Cross-Sectional Wastewater 1 Direction of change '
) Human ] '
Matched-Pair vaginal 1 H
1 . '
'
Step 2. Select a test: Reference ; @-o + Sample Setting ' Taxon-level Power
Pool JLL , Sample type H
[ ity-level test Plant S ' Sample size
ommunity-level surface H:I;r:" : Group ratio E i max log2 fold change=2
Taxon-level test O @ - ' :
“(®), ! Effect Size Setting o 012
Step 3. Select a setting Lake Human 1 Percentage of differential taxa ' E
water 1 Min log2 fold change H =005
Fixed sample size . 1 Maxlog2 fold change ' 004
. . '
: '
e Rrectsel @ ! Confounder Setting ' % a0 &
. 1 H Sample size
' Yes/No '
1 Confounding level ' 1 max log2 fold change=2 ]
MAYO @ ' Percentage of confounded taxa :
CLINIC  piyision of G ional Biology | D 't of Quantitati . 1 Min log2 fold change ' 09
Health Sciences N ! Maxlog2 fold change H Bos
AN : 2
1 . 2 0.7,
R e ® . Sequencing depth '
yang.lu@mayo.edu or chen.jun2@mayo.edu : Mean/SD ] .
20 40
oo e i | Sample size

Please cite the following references if you use mPower:

Yang, L., & Chen, J. (2023). Benchmarking differential abundance analysis methods for correlated microbiome sequencing data. Briefings in bioinformatics, 24(1), bbac607.
Yang, L., & Chen, J. (2022). A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions. Microbiome, 10(1), 130.
Yang, L., & Chen, J. mPower: a Real Data-based Power Analysis Tool for Microbiome Study Design.(In preparation)

https://microbiomestat.shinyapps.io/mPower/ (ongoing project)
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https://microbiomestat.shinyapps.io/mPower/

MicrobiomeStat: a R package supporting
comprehensive microbiome data analysis

SINGLE-POINT ANALYSIS MicrobiomeStat: Supporting Longitudinal Microbiome
Introduction AnalySiS inR

Alpha Diversity Analysis

Beta Diversity Analysis

, " Resources
Feature-level Analysis -, '1(\\ 2
N = !
One-Click Reports Generation ' %/QDCU)"/ * MicrobiomeStat Repository: GitHub
- “
-'%g'c\g * MicrobiomeStat Shiny Repository: GitHub
PAIRED SAMPLES ANALYSIS = b . * Shiny Web Application: Link
MicrobiomeStat e
Introduction TRACK, ANALYZE, VISUALIZE icrobiomestat Github Fages: Lin

* Function Documentation: Link

Alpha Diversity Analysis + Gitbook Wiki: Link

Beta Diversity Analysis

MicrobiomeStat is a specialized tool for analyzing longitudinal and paired microbiome data. It can also

be used for longitudinal analysis of other omics datatypes as long as the data are properly

One-Click Reports Generation normalized and transformed. As a special case, cross-sectional and case-control microbiome data
analysis is also supported.

Feature-level Analysis

LONGITUDINAL ANALYSIS

Introduction Gitbook LLM Integration

Alpha Diversity Analysis - . . ) I . . . .
Maximize the potential of MicrobiomeStat by utilizing its Gitbook wiki documentation in conjunction

Beta Diversity Analysis with Gitbook LLM (Large Language Model). In the top right corner of the Gitbook, you'll find the "Ask
or Search" feature. Feel free to pose any questions you might have, such as "How to filter microbiome
Feature-level Analysis data in MicrobiomeStat?"

One-Click Reports Generation

www.microbiomestat.wiki (ongoing development)
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http://www.microbiomestat.wiki/

