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Plan for this Lecture

Topic: Methods for analyzing omics datasets while
integrating prior knowledge

 Systems Biology and Knowledge Networks
* Sample Clustering

* Gene Prioritization

* Gene Set Characterization

Emphasis: tools that take advantage of prior knowledge
networks (KnowEnG)

Goal: understand basic concepts and aware of approaches
and resources



Systems Biology
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« Systems biology is the computational and mathematical modeling
of complex biological systems.

System biology view N

et —J_ :

iy
AN PRI
-~ | L

!

Metabolomics Phenotype
Proteom (metabolites)
Transcriptomics (proteins) / /
Genomics (mRNA) /
Epigenomics (DNA) /‘
/ ? L Gene [ Protein ] [Mctabolitc

expression concentration
ol influence studies studies

" Omiclev

Quantitative omic measurements

2 . . Figure from Angione, C. Human Systems Biology and Metabolic Modelling: A
Fpure from Olltva' : Z‘N_‘ and Barabasi Review-From Disease Metabolism to Precision Medicine. Biomed Res Int 2019.
Life's complexity pyramid.

« Studies the interactions between the components of biological
systems such as genes, proteins, metabolites, etc. (i.e. biological
networks), and how these interactions give rise to the function and
behavior of that system (phenotype)



Statistical and Machine Learning Methods

Knowen

Applied to heterogeneous ‘omics and phenotype data and prior knowledge

Unsupervised Supervised
Learning Learning

* No training example exists a,nd the goal is to learn structure
In the data

« Training examples are prowqjed with desired inputs and
outputs to help learning the desired rule

Clustering Classification Regression

(subtyping) (resistance group) (survival time)

Dimensionality Reduction Supervised Feature Selection

(data visualization) (biomarkers)



Some Example Applications

Clustering
(subtyping)

Supervised Feature Selection

(biomarkers)

Classification

(resistance group)

Regression

(survival time)

Knowen

|dentifying the subtypes of a
disease

|dentifying genes associated with a
disease

Predicting whether a patient is
sensitive or resistant to a drug

Predicting the survival probability of
a cancer patient

etc.



Prior Knowledge as Biological Networks

Knowen

- Existing prior knowledge in literature captures known interactions
within and across different levels of the biological systems

- Knowledge Network - a graphical representation of the
interactions of the components of a biological systems
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Directed Biological Networks

Knowen
Gene regulatory networks

* Nodes represent genes, proteins, etc.
« Edges show regulatory relationships between the nodes

« The network shows which entities (e.g. transcription factors)
regulate the expression of each gene

« Edges can have meaningful weights
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Figure from Song, et al. "Comparative transcriptional profiling and preliminary
study on heterosis mechanism of super-hybrid rice." Molecular plant 3.6 (2010).



Directed Biological Networks
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Signaling Networks
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Experimental Networks

] ] . . Knowen
Protein-protein interaction networks

* Nodes represent proteins
» Edges show interactions between proteins

* Interactions usually refer to different levels of physical contact and
proximity of protein molecules

Figure from Jeong, Hawoong, et al. "Lethality and
centrality in protein networks." Nature 411.6833 (2001).



Experimental Networks

Knowen CENTER OF EXCELLENCE
Gene co-expression networks

* Nodes represent genes

* An edge exists between two genes
that are highly co-expressed across
different samples

BMC Biocinformatics. 2008; 9: 659. PMCID: PMC2631488
Published online 2008 Dec 29. doi: 10.1186/1471-2105-9-559

WGCNA: an R package for weighted correlation network analysis

Reviewed by Peter Langfelder‘l and Steve Horvath®™2
Figure from https://commons.wikimedia.org/wiki/File:Gene_co-
expression_network_with_7221_genes_for_18_gastric_cancer_patients.png

Figure from https://www.freecodecamp.org/news/how-machines-make-predictions-finding-correlations-in-complex-data-dfd9f0d87889/
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Computational Networks

. _ Knowen
Evolutionary Conservation networks

* Nodes represent gene DNA or protein amino acid sequences

« Edges represent the similarity between the pair of sequences, the
more similarly the more recently the nodes share an evolutionary
history
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Text Mining networks

Figure from Yahaya, et al. "Gene expression changes associated

) NOd eS represent gene entities with the airway wall response to injury." PloS one 8.4 (2013).

« Edges represent the frequency names, aliases, and synonyms for a
pair of genes co-occur in literature abstracts
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Computational Networks

Integrated networks

* Nodes represent gene or proteins

Knowen CENTER OF EXCELLENCE

« Edges represent the weighted combination of normalized edge
weights from many different types of network edges based on some

predetermined criteria
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Mucleic Acids Res. 2015 Jan;43(Database issue) D447-52. doi- 10.1093/marfgku1003. Epub 2014 Oct 28.

STRING v10: protein-protein interaction networks, integrated
over the tree of life.

Szklarczyk D, Franceschini A", Wyder §", Forslund K2, Heller D", Huerta-Cepas J2, Simonovic M?, Roth
A' Santos A3, Tsafou KP?, Kuhn M*, Bork P®, Jensen LJ®, von Mering C7.

Genome Res. 2011 Jul:21(7):1108-21. doi: 10.1101/gr. 115992.110. Epub 2011 May 2.
Prioritizing candidate disease genes by network-based boosting
of genome-wide association data.

Lee 1", Blom UM, Wang Fl, Shim JE, Marcotte EM.
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Documentation

Type: 0

Report Bug

Contact Us

Visualizing / Sharing Biological Networks

Knowen

Cell cycle: G1/5 phase transition

Nodes: 25
PUBLIC Q
@context:

Owner

Created: M.
Last Mo
uuID: 1
Format: U

Edges: 90

Read Only ,b

5. O DD

https://home.ndexbio.org/quick-start/
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KnowEnG: Platform for Network-
guided Analysis

Knoweng s Analysis Pipelines Data Support

Start a New Pipeline Welcome, Charles Blatti
n
About KnowEnG Pipelines . e [ CEe
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Sample Clustering U le 1 m J. []
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genes are enriched for a pathway, 3 Gene . ) . .
Ontology term, or ather types of annotations. This V|5ual|zat|0ns We hope you ﬁnd |t useful and we FILTER ROWS BY LABELS coca2_tcga_gene_cnv.ixt
pipeline tests your gene set for enrichment against e el R H‘\ "'Wﬂ W Y .
alarge compendium of annotations. You have the ShowTop| 9~ Rows ensz [0 I\I\ il I 471 508 Mv
cotion of using 2 standird statistical test or 2 1 A fifl i M M uw i |lm‘ i a1 Mp‘ L -l.
Mrowladzs Metwark-hased oach similar to a i SORT ROWS BY = \H \H I I \ I (TR ]
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Signature Analysis Learn About the Knowledge Network

Spreadsheet Visualization The knowledge-guided analyses use the KnowEnG Knowledge Network,
biological datasets of gene/protein interactions, relationships, and annotal

https://knoweng.org/analyze/
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KnowEnG: Knowledge Engine for Genomics
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Samples
‘ . . . . N Y O B
- ‘omics Data Analysis Pipelines 0
@ [@ RNA-seq,
C [  Somatic
O [@ Mutations,
5 etc..
||
||

- Using Prior Knowledge

Physical interactions,
co-expression,-pathways,
biological processes,
text mining, etc.

Ay Cdae N Y

- In a Scalable Cloud Platform

azon

services
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KnowEnG Pipelines and User Interface

Sample Clustering
* What are the separate transcriptomic
subtypes of patients and how do they
relate to outcome?
Feature(Gene) Prioritization
« What genes are differentially expressed
with respect to viral shedding
Gene Set Characterization
« What pathways do these differentially
expressed genes relate to?
Signature Analysis
« Given a new patient, what subtype does
their profile most resemble?
Spreadsheet Visualization

» Given multiple omics and clinical
datasets on patient samples, what
features relate to selected phenotypes?

KNnoweng g

Start a New Pipeline

About KnowEnG Pipelines

Sample Clustering

Feature Prioritization

I
)
Start this Pipeline

Signature Analysis

Spreadsheet Visualization

BIG DATA TO KNOWLEDGE
CENTER OF EXCELLENCE

Knowen

AnalysisPipelines ~ Data  Support

Welcome, Charles Blatti

‘Welcome

Welcome to the KnowEnG Platform. KnowEnG el
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scalable cloud computation and exploration of req
visualizations. We hope you find it useful and we

Learn About the Knowledge Network
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Analysis Pipelines Using Prior Knowledge

Knowen

Graph Mining

Knowledge Network (KN): heterogeneous graph whose nodes and
edges encodes major public data sets as a network represented by

genes/proteins, their properties, and relationships

Omics data: a spreadsheet (rows = genes or proteins) to be

analyzed

& + + wee = =
Gl (09|03 0.4 ]0.0
G2 {0105 0.1 |0.2
Zi .. |08 ]0.0 1003
.« | 0.0 1.0 0.8 | 1.0
G100( 0.9 | 0.1 0.1 0.9

SPREADSHEET

Knowledge network + user spreadsheet

duluiea| aulyoe|p
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KnowEnG Prior Knowledge Networks

Gene-Gene

Gene-
Property

Protein-Protein
Interactions

Protein
Homology

Regulation

— Annotations

—+— Characteristics

— Experimental
Outcomes

Version:

Number of Species:
Number of Resources:
Number of Datasets:
Number of Edge Types:
Number of Edges:
Number of Nodes:
Number of Gene Nodes:

KNOWLEDGE NETWORK CONTENTS:

Number of Property Nodes:

KN-20rep-1702
20

13

159

43
233,459,368
594,474
404,868
189,605

BioGRID JaP i AeD

¥ ~7/00e  HumanNetEd

ALLVAMHVAYRRHEKFREFMK
ALLVAMHVAYRRHEKKREFMK

Pathway Commons

8° == Molecular Signatures
= === Database

PANTHER

Classification System

Motif 1 Motif 2
\

— : '
SLV T S nrmised B ity
0!?6\:" of microRNA largels

ALLEN BRAIN ATLAS

Edge Type Collection =

Text_Mining/Integrated
Coexpression
Experimental_Interaction
Conservation/Proximity

Pathway_Database

Total
Human

Edge Type a Metwork
Collection Edges

(millions)
Tissue_Expression 13.7
Disease/Drug 6.0
Regulation 4.4
Pathways 0.6
Ontologies 0.3
Protein_Daomains 0.0
Total 25.0

Knowen CENTER OF EXCELLENCE
Human All
Metwork , Human , Network L All -
Edges ~ Datasets © Edges ~ Datasets ™
{millions) (millions)
9.0 2 130.6 19
73 2 119.2 19
54 4 108.7 21
16 2 26.1 36
11 3 63.4 20
243 ] 4487 42
Human All All
a Property L Human , Metwork ., Property
Nodes 7~ Datasets T Edges Nodes
(thousands) (millions) (thousands)
259 32 13.7 259
223 13 6.3 234
3.3 10 44 3.3
16.9 5 1.4 34.6
17.2 5 1.2 235
6.2 2 0.5 7.8
151.7 &7 28.1 178.5

https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md
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Network-guided Sample
Clustering

A " Similarity is
ambiguous

because little
Standard overlap exists

- o among patient
n @ Similarity mutations.

: Similarity
Network - ® e
Knowledge-guided ©) . Af’afg:‘. e improved by
2 nalysis S
using NBS o considerin
g Gene Mutations .o mittona
per Sample impact on local

networks.

Mutation Scores After
Network Propogation
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Network-Guided Sample Clustering

Goal:

- Stratification (clustering) of tumor samples based on somatic mutation
profiles

Main Issue:

- The mutation data is very sparse and most conventional clustering
techniques fail to identify reasonable patterns

 Although two tumors may not share the same somatic mutations, they
may affect the same pathways and interaction networks

20



Knowledge-Guided Sample Clustering

KNOWeNG2:: e oreceience

S1 S2 S3 5S4 S5 S6

- Problem: Data sparsity in gene-level somatic Got
mutation data Go2

GO3
G04

- Toy Example GO5

Due to the sparsity of the data, all samples ggf

are at equal distance of each other GOo8
GO09
G10
G1l1
G12
G13
G1l4
G15
G16
G1l7
G18
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Knowledge-Guided Sample Clustering

KNOWeNG2:: e oreceience

S1 S2 S3 S4 S5 S6

- Problem: Data sparsity in gene-level somatic 1 Go1
mutation data P1 GO2

P1 GO3
P1 GO4
- Toy Example P1 GO5

- Due to the sparsity of the data, all samples P1 GOe
P2 GO7

are at equal distance of each other P2 GOS

Pathway information clarifies the similarity P2 GO9

damong some samples P2 G10
P2 G11

P2 G12
P3 G13
P3 G14
P3 G15
P3 G16
P32 G17
P3 G18

22



Knowledge-Guided Sample Clustering

- Problem: Data sparsity in gene-level somatic
mutation data

‘ Toy Example
Due to the sparsity of the data, all samples
are at equal distance of each other
Pathway information clarifies the similarity
among some samples
Conventional clustering methods can then

identify clusters based on network-
smoothed features

P1
P1
P1
Pl
P1
P2
P2
P2
P2
P2
P2
P3
P3
P3
P3
P3
P3

Knowen

S4 S5 S6
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Network-based Stratification (NBS)

Nat Methods. 2013 Nov;10(11):1108-15. doi: 10.1038/nmeth.2651. Epub 2013 Sep 15.

Network-based stratification of tumor mutations.
Hofree IVI1, Shen JP, Carter H, Gross A, Ideker T.

KNOWeNG2:: e oreceience

C Network NMF: minlIF - WHII + }-IIWILIIF
W.H=0

a b

AnIEl

Somatic mutation matrix Network smoothing:
atients x genes
(p genes) —— Patients
ST
Draw a sample of genes O—p Gene-gene L = network influence
and patients i i O :
p b interaction constraint

onto a network and propagate

l

Network clustering:
cluster smoothed (patients x genes)

Network smoothing:
for each patient, project mutations

matrix using network NMF O Patient
genotype 1
Repeat N times v @ Patient
genotype 2 E
=
=
®

Aggregate consensus matrix
(patient x patient) ® Co-occurrence of
genotype 1 and 2

Patients

Network Smoothing — Random Walk with Restart
- Patient Sampling for Robust Clustering
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Random Walk With Restart Algorithm

- Fast, scalable guilt-by-
association method
- Same ideas as personalized
PageRank
. Intuition

- Walker at a node either

With probability 7-r, follows an
outgoing edge

With restart probability r, returns to
node in restart set

- Converges to long run “stationary”
distribution of the walker over the
nodes

- Final node ranking based on
distribution incorporates

- Connectedness of node in network

- Proximity of node to restart set

Knowen
ags s . O
Initialization 3 o)
O
o 00
0O o OQO O
P~ c? ¢
+2 @c%ocbOoo 53— ©
3 é?é;g s
0008 o0
5) O
g4 ¥
_ o)
Propagation - =
00
Restart OO & Ot O
Jump P—aed M 0
o) efe)
WIthr‘ ¢ &OOO%OO R
rﬁ) OO O O
3 @)
NS Edge
5 N Follow
A with 1-r
O 0o
b
Convergence @ . -
o Q@
o o Ooo ®
Y %A ® o o
O (8 @
$5° oo ©
e 60 O
® oeO
@& [ ]

https://cseweb.ucsd.edu/~atsiatas/pr_diffusion_slides.pdf 25



NBS Sample Clustering with KnowEnG

« 3276 tumor samples from TCGA from 12 cancer

projects with sparse non-synonymous somatic

mutation

- Perform standard and network-guided Sample

Clustering in platform

- Knowledge-guided clusters significantly relate to

survival outcome

number of clusters = 14

Log Rank p-value = 2.20E-35
0.8

06|

04}

02

10400 2000 3000 4000 5000 G000 7000
Time {days)

0.0
0

Knowledge-guided analysis of "omics" data using the
KnowEnG cloud platform

Charles Blatti Il g, Amin Emad B. Matthew J. Berry, Lisa Gatzke, Milt Epstein, Daniel Lanier, Pramod Rizal, Jing Ge,
Xiaoxia Liao, Omar Sobh, Mike Lambert, Corey $ Post, Jinfeng Xiao, [ - | Saurabh Sinha [view all ]

Published: January 23, 2020 « https://doi.org/10.1371/journal pbio 3000583

= luster  (n = 976)
— rluster 1in = B27)
= Cluster 2 in = 264)
= rluster 3 in = 367)
= glusterd (n = 389)
cluster 5 (n = 5)
= luster & (n = 6B)
cluster 7 in = 531)
cluster 8 (n = 47)
= Cluster 3 (n = 43)
cluster 10 (n = 34)
= luster 11 {n = 28]
cluster 12 (n = 21)
= gluster13in=7T)

KNOWeNG2:: e oreceience

Much better than standard
methods that do not
incorporate prior knowledge

10 =
e
£

08| Hy

06

8

04

0z

0o

0 1000 2000 3000 4000 5000 8000 7000
Time (days)

In line with specialized
method developed in TCGA
paper that would be very
difficult to reproduce

mber of clusters = 14

1000 2000 3000 4000 5000 600D 7000
Time (days)
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Integrating Experimental Assays for Stratification

Knowen CENTER OF EXCELLENCE
) a mMRNA.. e p DNA Methyl
- Data from each experimental . = - = .ﬂ

assay Is subjected to sample
clustering to find cancer
subtypes per assay

- Mutation data required
specialized knowledge guided
methods (panel F)
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Online Now  Current lssue  Archive Journal in

Multiplatform Analysis of 12 Cancer Types Reveals Molecular
Classification within and across Tissues of Origin
Kzth Donaro,




Cluster-Of-Cluster-Assignments (COCA)

Knowen

- Merge cluster assignments x samples matrices
- Cluster the samples in the multi-omics matrix

C1
C2
C3

MiRNA

Cl1

mRNA  ©2
C3

C1
Protein Cc2
Cc3

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

Cluster Samples

r---‘---1

S1 S2 S3 5S4 S5

mi.C1
mi.C2
mi.C3
m.C1
m.C2
m.C3
p.C1l
p.C2

p.c3 [ |
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13 Cancer Subtypes from 6 Assays
§ 220000 W
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. Strong 1
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disease

- Interesting
relations
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Knowen

Tissue
COCA

mRNA 3
RPPA &
mRNA 8
DNAmeth 8
miRNA 7
mRNA 2
mMiRNA 8
mRNA 5

mRNA 4

DNAmeth 14

miRNA 11

DNAmeth 13
RNA

m| 1
DNAmeth 5
miRNA 5
CNT

mRNA 10
DNAmeth 6
miRNA 4
mRNA 6
RPPA 2
DNAmeth 15

DNAmeth 16
CN5

RPPA 7
mRNA 15
miRNA 8
DNAmeth 10
DNAmeth 11
DNAmeth 12
DNAmeth 2
N3

RPPA 1
mRNA 9
DNAmeth 17
miRNA 14
miRNA 13

)

CN

mRNA 13
miRNA 15
DNAmeth 19

BIG DATA TO KNOWLEDGE

CENTER OF EXCELLENCE

COCA

. 1 - LUAD-enriched

2 - Squamous-like
3 - BRCA/Luminal
4 - BRCA/Basal
5-KIRC

6 - UCEC

7 - COAD/READ
8-BLCA

9.0V

10 - GBM

11 - small-various
12 - small-various
13 - AML

Tissue Type

BLCA
BRCA
COAD
GBM
HNSC
KIRC
LAML
LUAD
LUsC
ov
READ
UCEC

Copy Number
DNA Methylation
miRNA

mRNA

RPPA

Figure from Hoadley, et al. "Multiplatform analysis of 12 cancer types reveals
molecular classification within and across tissues of origin." Cell 158.4 (2014).

29



KNOWeNq ::: esoaraormeos: [

Network-Guided Gene
Prioritization

Ranking of
L @ Dlﬁe rential Gene score is
2 Expression (DE) calculated
Standard Sample Samples @ chre independent of the
Disease 3 @ relationship
Labels * t-Test among genes.
© o * o

........................... Q@ @ [ et e

o0 ' @ '@

. Network - 2 @ ; " S
Knowledge-Guided @) o m N.ewk 5 C?\%rr‘]ege

Gene Expression based
Values per Sample @ 4 ﬁ_g:ﬁ Analysis 4 @f}

b
=ile

using ProGENI

@ Transformed Final ProGENI
Transformed Gene DE Score Ranking
Expression Values

Rewards genes that
are associated with
the phenul‘fpe and
are also we
connected to
phenotype-associat-
ed genes.
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Characterizing Cancer Subtypes

KNOWeNG2:: treorveaienc

- Find top related mutations and copy number alterations
- Compare each subtype vs "all others
- KnowEnG calls this "Gene Prioritization’

Bl I e

[ - | | i
B 2 kTP T mw;,m _ ITIT) B Muiaions
Ve | - IIIlIII s VHL viscann
KRAS fI 11 | I J KRAS | W e
EGFR | | | iy EGFR 'NA
SOX2

\ w1y I TG T \ '. l | '. , _ % Copy Number

*tlul]l h u“ i ORI IRE 1T . - it a I Eg:égz -y

|l|| ke n\ i ol { A | " :|' RAD17 deleted
III mmm [ | i LR CDKN2A neutral

Figure from Hoadley, et al. "Multiplatform analysis of 12 cancer types reveals
molecular classification within and across tissues of origin." Cell 158.4 (2014).
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Towards Network-Guided Gene Prioritization

Knowen

Drug Sensitivity Example

e Goal:

+ Identifying genes whose basal mMRNA expression determines the drug
sensitivity in different samples (supervised feature selection)

 Motivations:

Overcoming drug resistance () “9

¢
!h
+
&\
]

Revealing drug mechanism of action

|dentifying novel drug targets k2 ~y

Predicting drug sensitivity of individuals
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Standard Gene Prioritization

Examples of current methods:

« Score each gene based on the correlation of its
expression with drug response

KNOWeNG2:: e oreceience

Nat Chem Biol. 2016 Feb;12(2):109-16. doi: 10.1038/nchembio.1986. Epub 2015 Dec 14.

Correlating chemical sensitivity and basal gene expression
reveals mechanism of action.

Clemons PA', Shamii AF', Schreiber SL™.

response
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Standard Gene Prioritization

Examples of current methods:

« Score each gene based on the correlation of its
expression with drug response

- Use multivariable regression algorithms such as
Elastic Net to relate multiple genes’ expression
values to drug response

KNOWeNG2:: e oreceience

Nat Chem Biol. 2016 Feb;12(2):109-16. doi: 10.1038/nchembio.1986. Epub 2015 Dec 14.

Correlating chemical sensitivity and basal gene expression
reveals mechanism of action.

Rees MG', Seashore-Ludiow B"2, Cheah JH"2, Adams DJ"2, Price EV'"2, Gill 8", Javaid S%, Coletti
ME", Jones VL', Bodycombe NE'-2, Soule CK'2, Alexander B', Li A, Montgomery P*, Kotz JD, Hon

Clemons PA', Shamii AF', Schreiber SL™.

Nature. 2012 Mar 28;483(7391):603-7. doi: 10.1038/nature11003.

The Cancer Cell Line Encyclopedia enables predictive modelling
of anticancer drug sensitivity.

Barretina J1, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov

GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-
Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J,
Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S,

G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub
TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA.

response
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Augmenting Gene Prioritization

Examples of current methods:

Score each gene based on the correlation of its
expression with drug response

Use multivariable regression algorithms such as
Elastic Net to relate multiple genes’ expression
values to drug response

Shortcoming:
These methods do not incorporate prior information

about the interaction of the genes

Knowen CENTER OF EXCELLENCE

Nat Chem Biol. 2016 Feb;12(2):109-16. doi: 10.1038/nchembio.1986. Epub 2015 Dec 14.

Correlating chemical sensitivity and basal gene expression
reveals mechanism of action.

Clemons PA', Shamii AF', Schreiber SL™.

Nature. 2012 Mar 28;483(7391):603-7. doi: 10.1038/nature11003.

The Cancer Cell Line Encyclopedia enables predictive modelling
of anticancer drug sensitivity.

Barretina J1, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov

GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-
Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J,
Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S,

TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA.

35



Network-Guided Gene Prioritization

KNOWeNG2:: treorveaienc

Hypothesis:

« Since genes and proteins involved in drug MoA are functionally related, prior
knowledge in the form of gene interaction network (e.g. PPI) can improve
accuracy of the prioritization task

genes response
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ProGENI

KNOWEeNG2:: a5 or ettt

ProGENI: Network-guided gene prioritization

* An algorithm that incorporates gene network information to improve
prioritization accuracy

Genome Biology
Emad et al. Genome Biology (2017) 18:153
Featured article: new insights D01 10.1186/513055-0171262:3 Genome Biology
into mechanisms of
chemoresistance

Knowledge-guided gene prioritization ® e
reveals new insights into the mechanisms
of chemoresistance

Amin Emad’®, Junmei Cairns?, Krishna R. Kalari®, Liewei Wang® and Saurabh Sinha®’

37



BIG DATA TO KNOWLEDGE

ProGENI Method
Knowen CENTER OF EXCELLENCE

Step 1: Generate new features representing expression of each gene and
the activity level of their neighbors weighted proportional to their relevance

Cell lines
2
X

Perform Network
transformation of
gene expressions

Network
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ProGENI Method
Knowen CENTER OF EXCELLENCE -

Step 1: Generate new features representing expression of each gene and
the activity level of their neighbors weighted proportional to their relevance

Cell Ilnes

'I-.:"J
.-:"

jﬂ-

on complex networks reveal

Figure from Rosvall and Bergstrom. "Maps of random walks
es 105.4 (2008).

community structure." Proceedings of the national academy of scienc

Perform Network
transformation of
gene expressions

39
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ProGENI Method

KNOWeNG2:: e oreceience

Step 1: Generate new features representing expression of each gene and
the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)

Drug response

(e.g. 1C50)
Genes

g M IRV

£ R ey

e S | :

Gene expressions \ . '
anm

/ ——r
Perform Network Identify response correlated
transformation of genes (RCG) and use them as the
gene expressions restart set for a RWR

Network
40



ProGENI Method

KNOWEeNG2:: a5 or ettt

Step 1: Generate new features representing expression of each gene and
the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)

Step 3: Score genes based on their relevance to the RCG set

Drug response
(e.g. 1C50)

Genes

Perform Network Identify response correlated Obtain equilibrium
transformation of genes (RCG) and use them as the probability distribution
gene expressions restart set for a RWR for the nodes

Network
41



ProGENI Method

KNOWEeNG2:: a5 or ettt

Step 1: Generate new features representing expression of each gene and
the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)
Step 3: Score genes based on their relevance to the RCG set

Step 4: Remove network bias by normalizing scores w.r.t. scores
corresponding to global network topology

Drug response
(e.g. 1C50)

Genes

Normalize w.r.t.

L
Perform Network Identify response correlated Obtain equilibrium Rank genes according
transformation of genes (RCG) and use them as the probability distribution to normalized
gene expressions restart set for a RWR for the nodes probability scores

Network
42



ProGENI Analysis Datasets

Knowen

« Human lymphoblastoid cell lines (LCL) MAYO
. . CLINIC
« Gene expression (~17K genes of ~300 cell lines)
* Drug response of 24 cytotoxic treatments @

 Publicly available dataset from GDSC
* Gene expression (~13K genes of ~600 cell lines from 13
tissues) gp-ch
* Drug response of 139 cytotoxic treatments |

- Publicly available prior knowledge

* Network of gene interactions (PP| and genetic interactions)
from STRING (~1.5M edges, ~15.5K nodes)

A
% STRING
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Validation Using Drug Response Prediction

KNOWeNG2:: e oreceience

* Genes ranked highly using a good prioritization method are good
predictors of drug sensitivity

Repeat N, times
S .:-"" r 'r.'L 1
Test set
Genes
" . > —_—
, =t _
L e .1 3
S Manemyn ) Y n'|ii-' "‘:
8 | | !..! - .:r
L] B 'F o -'
| ma InN
Gene expressions Trammg set
Divide samples Train a SVR on training Predict drug
into training and Rank all genes set using expression of sensitivity of
test sets highly ranked genes the test set

44



Validation Using Drug Response Prediction

KNOWeNG2:: e oreceience

LCL Dataset - Pearson  ElasticNet

Num. Drugs (out of 24)
ProGENI > Baseline

FDR (Wilcoxon signed-rank test) 6.5 E-3 9.6 E-5

14 20

GDSC Dataset - Pearson  ElasticNet

Num. Drugs (out of 139)
ProGENI > Baseline

FDR (Wilcoxon signed-rank test) 9.1 E-4 4.0 E-21

66 110

0.85 0.7 0.8
—= : - = r :
.: o . : L . .
L ] * [ ]
0.7} hy -‘.. ] . s_ :.'i. L 0.7r LY
s vl e [ 22y y - A
< b -« o®
—_— * Y 3 [ ] Q LK )
< & e 06l 0.7 v, | K
wn ﬂ'."' . (X ' o ° T ° H
s S 075} ' - [ 3 ® s o
= ¢ | Pe 0.6 s ]
Wogel e ] (A y “ & « ¢
o 0o, @ § 2 2
s |° < 1 % [
a . 0.70 ryag) : 2 L
— A ‘. * [ ]
S ot® 05F ° E 0.6} .
% Y ‘ ‘ ° I} *® 0.5
0.65) . 1 s
05|
[ ]
. . . 0.60 . . 04 . . 05 . . 04 . . .
05 06 07 0.6 0.7 0.8 04 05 06 07 05 06 07 08 04 05 06 0.7
17-AAG 681640 A-443654 A-770041 ABT-263
FDR = 3 2E-29 FDR = 1.2E-31 FDR = 7.1E-33 FDR = 12E-31 FDR = 2.9E-34
PIF = 88.00 % PIF = 87.20 % PIF = 87.20 % PIF = 87.20 % PIF = 86.80 %

SPCI (EN-SVR)
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Functional Validation

Knowen N

We validated role of 33 (out of 45) genes (73%) for three drugs.

Absolute value of
Gene Symbol Rank (ProGENI) Rank (Pearson}) Pearson correlation Evidence
coefficient
ATF1 1 1 0.2000 Direct (this study)
MiS12 2 4 0.1887 Direct (this study)
OSBPL2 5 6 0.1865 Direct (this study)
CSNKZ2A1 7 1587 0.0752 Direct (literature)
PSIP1 (LEDGF) 8 46 0.1537 Direct (literature)
CAMKZ2A 9 6991 0.0157 Direct (literature)
CSNK2A2 10 4870 0.0347 Direct (literature)
GOSR1 11 8867 0.0167 Direct (this study)
MAPKS 13 7574 0.0112 Direct (literature)
SPH 14 6287 0.0217 Direct (literature)
CREB1 15 665 0.1000 Direct (literature)
NOC3L 3 3 0.1893 Not found
IL27TRA 4 2 0.1911 Not found
MGEA5 8 7 0.1814 Not found
WAPAL 12 8 0.1805 Not found
BT549
p-value < 0.0001 p-value < 0.0001
1.0+ - 1.0+
0.8 ) 0.84 \ : My
oc . o6 . o
0.4 . 0.44 .. : ,‘ ﬁ
024 = Negsi 024 = Negsi N
U-"_Z A SIMISLi1 . 1' 0-“_2 A leSBF-’;_Q . 1' ; /
concentration (uM) concentration (uM) £ \\ RPSIKAS

\/

RP&sKA2
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KNOWBNG 2 et T

Gene Expression Signatures

Samples Signatures Sample-Signature Similarity

€

@ Similarity
@

signatures

Gene Expression Gene Expression
Values Values



Gene Expression Signatures

Knowen

Massive Transcriptomic Profiling Projects
TCGA and ICGC sl
GTEX and CCLE
LINCS

Definitions

Projects produce expression vectors for
samples (e.g. gene expression levels)

Scoring the difference in expression between
samples of two (or more) conditions produces
differential expression vectors

Signature (of a biological state):

Gene Set — differentially, characteristically
expressed genes in that state relative to some
reference (control or population)

Differential Expression Vector — the differential

expression scores for the subset of genes in the
same comparison

;

R

ﬁl-ﬂ:ﬂ

Y=

e

Figure from Greenough, et al. "A gene expression signature that correlates with CD8+
T cell expansion in acute EBV infection." The Journal of Immunology 195.9 (2015).
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Gene Expression Signatures

Example Comparisons
Mutated vs Wild-Type
Metastatic vs Primary
Tumor vs Normal
Perturbagens
Drug Treatment vs Placebo
Environmental Stimuli vs Control
Gene Signatures provide a uniquely
characteristic pattern of gene expression
that is tied to its studied biological or
medical phenomenon

Enable researchers to relate samples and other
phenomenon by finding the similarity to the gene
signatures

Focus understanding on underlying mechanism
for phenomenon to a subset of gene behaviors

;

o

ﬁl-ﬂﬁl

Y=

e

Knowen
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Public Resources for Gene Signatures

Knowen

There are many public resources for acquiring gene expression
signatures
Extracting signatures yourself

& GEO2Enrichr [el=lepi®!

Libraries of Curated Signatures

}:{ G E N SVA :—- hp:gle?ullagr E‘EﬂEures

- wm==__ Database

Lab will use signatures from the Library of Integrated Network-
Based Cellular Signatures (LINCS)

NIH LINCS

PROGRAM

50



The LINCS DataCube of Signatures

Knowen

Gathering a data cube of gene signatures
Using many different:

] ""

Cell Types i "'
Dozens of cell lines ."""
Induced pluripotent stem cells ¢ .......
Primary Cells 3 .......

Perturbagens 2 .......
Small molecules / Drugs % ......-
CRISPR overexpression and © .......-
shRNA knockdown —
Microenvironments Perturbations
Ligands Q\Q

ga

Experimental Assays
Gene expression: microarray, RNA-seq, L1000

Protein expression: RPPA, P100 mass
spectrometry

Morphological and Proliferation: biochemical
and imaging assays
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Signature Similarity Analysis

KNOWeNG2:: e oreceience

- Given a query signature and a library of reference signatures,

5 Oct;28(18):5851-64. doi: 10.1128/MCB.00305-08. Epub 2008 Aug 4

h OW d O yO U fi n d th e Si m i Ia r S i g n atu reS? T;j:rizl-:i;na.ture.-baséd ébproach ideﬁtiﬁes ngO.R as a regulator

of p73.
Rosenbluth JM', Mays DJ, Pino MF, Tang_LJ, Pietenpol JA
BIOLOGICAL STATE REFERENCE DATABASE CONNECTIONS
OF INTEREST (PROFILES)
(SIGNATURE)
o] \3:> \/,%
E @ E E ﬁ posmve
wﬁ g i= = z = ﬁ&
= = = = Q
: query = = = = output he
down :
= = = = negative
strong weak ull strong
positive positive negative

Types of Similarity Comparisons
Gene Set & Differential Expression Vector
Differential Expression Vector & Differential Expression Vector
Gene Set & Gene Set

52



Standard Similarity Measures

Knowen CENTER OF EXCELLENCE
* When both signatures are represented as
differential expression vectors:
Correlation Formula [ v} Description Stucly
i Pearsan I T Linear similarity measure that uses Pearsan 1920 [29]
£ : mean-centering and narmalization
,-'E =, T —TF of the profiles,
¥ § 4
£ Cosing G Linear similarity measurse that uses
S narma ization of the crofil es.
SN
" A
' [
2 Spearman YA — N =5 Zp=arman correlatian is Fearson spearman 1994 [34]
I where »is rank of x, corrglation or the ranks of slements
."E (fr—r¥ ! ."E frees s in the profile.
R o
in u, 55 rank of ¥ inow
1000

* In one analysis, they did not observe a large o0
performance difference between the possible °®

400
measures -

PLoS One. 2013 Jul 10;8(7).e68664. doi: 10.1371/journal pone 0068664. Print 2013

Comparison of profile similarity measures for genetic interaction
networks.

Deshpande R', Vandersluis B, Myers CL.




Gene Set Enrichment Analysis

Knowen

 When sample signature is vector and library signature is gene set

¢ GSEA - http://software.broadinstitute.org/gsea/index.jsp

Gene set enrichment analysis: a knowledge-based approach for

i A Phenotype
"6SEA - Claine
Cane Sat Enrichmart Anaivals A B

S

1l :"I .|r-.rI L] B

AT AR

" T |.H .

Bed
W .-J-
1-' A
S, b
"'f'—i..
l'.i'.!_—'
_I.I
f aie
[
- -
o
[
L)

W gl e
al L7

Hanheq Gene List

interpreting genome-wide expression profiles.
1

Subramanian A", Tamayo P, Mootha VK, Mukheree S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL.,
Golub TR, Lander ES, Mesirov JP.

B Leading edge subse!
¥ Gene &S
Gene set S Hﬂ] ”
— Correlation with Phenotype
i Random Walk
| =g
ES{SJI _|:r X HHR“M\_
Maximum deviation Gene List Rank -
from zero des the
enrichment score E5(5)

* Modification ot the Kolmogorov-sSmirnov Statistic

« Calculate the enrichment score (ES) that represents the amount the genes in the gene
set are over-represented in the top or the bottom of the signature vector

» Estimate statistical significance of the ES by permuting the mappings between the data
» Adjust for multiple hypothesis testing when analyzing a large number of gene sets
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http://software.broadinstitute.org/gsea/index.jsp

Gene Set Association Tests

Knowen

* For use when both signatures are gene sets
* Also known as Gene Set Characterization

* One-sided exact Fisher / Hypergeometric
distribution tests
» Covered by Saurabh this morning
* Available through tools like:
« DAVID - https://david.ncifcrf.gov/
* Enrichr - http://amp.pharm.mssm.edu/Enrichr/ @35‘ Enrichr
« Metascape - http://metascape.org/gp/index.html

Standard

—Enrichment Test
User GS KnownGS
[ —
— -
r
Universe of Genes

55


https://david.ncifcrf.gov/
http://amp.pharm.mssm.edu/Enrichr/
http://metascape.org/gp/index.html

Knoweng :: sqdueseetice N i g

of Health

Network-Guided Gene Set
Characterization

-' Pathway
o “@e Enrichment May suffer from
User Gene Set (o Score incomplete
Standard o i, higher score annotations of
pathways.
Overlap
Enrichment “ p3 —— lowerscore
& —
N DRaWR
Network - Score Considers network
fmgd neighbor enrichment
Analysis in scoring pathways.
P2 — o Migherscore % This pathway ranks
higher due to
P3 — lowerscore network neighbors.

Expanded User Gene Set
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Idea for a Network-based Method

Knowen

Use guilt-by-association principles to

find out which annotations are well —
. Red Type o
connected to the query genes in a

heterogeneous network.

These well connected annotations
should be specific to the query genes,
and not simply hub nodes in the
network.

Developed Discriminative Random
Walks with Restart (DRaWR)

Query Species
All Gene Nodes

oV | "Blue” Type
Features

Biginformatics. 2016 Jul 15,3214 2167-735. doi: 10,1083 bioinformatic s/btw151. Epub 2016 Mar 159
Characterizing gene sets using discriminative random walks with
restart on heterogeneous biological networks.

Blatti C?, Sinha 5°.




Value of Network-Guided Analysis

Knowen

» Take advantage of gene neighbors

User Set —
Apoptosis Genes
Genes That Bind To

Apoptosis Genes

 Incorporate dependencies from separate knowledge in
analysis

/




Value of Network-Guided Analysis

Knowen

Extension to poorly annotated domains

Embryonic Brain

Development “Red” Type
Features

“ =

(7]
o3 3=
3'8 0
Q.Z mg
Qe 22
2'5 O wn
83 +
£ “ 3
< 3
et m

s Features

Human Fish

Integrating multiple data types
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Network-based DRaWR Method

Knowen

DRaWR - using random ["Red" Typ
Features
walks on a network

* Construct a heterogeneous
network of interest

)

SOPON UL
s3129dS |euoilIPpy

Query Species
All Gene Nodes

Heterogeneous [”Blue” Type}
Edge Types Features
type_A
Bioinformatics. 2016 Jul 15;32(14):2167-75. doi: 10.1093/bioinformatics/btw151. Epub 2016 Mar 19.
type_B Characterizing gene sets using discriminative random walks with restart
type C on heterogeneous biological networks.

Blatti C', Sinha S2.
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Network Methods for GSC

Knowen

DRaWR - using random
walks on a network

* Construct a network of
interest

* Find stationary distribution on
network

61



Network Methods for GSC

DRaWR - using random
walks on a network

* Construct a network of
Interest

* Find stationary distribution on
network

* Find gene set specific
distribution

* Return annotation nodes that
are especially related to the

query

Query
Genes

Knowen
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Social Aggression Study Application

KNOWeING 34 st

« ldea: Evolutionary “toolkits” — genes and modules with lineage-specific
variations but deep conservation of function

* Questions: Are there toolkits that underlie social behaviors
« Such as aggressive response to territorial intrusions?

« Study: gather brain transcriptomic responses to social challenge from
three social species — honey bees, mice, and stickleback fish
« With and without exposure to intraspecies intruder
» From different brain regions and/or durations after event

* Results: sets of differentially expressed genes across three species

| L -

MOUSE STICKLEBACK
DEGs at FDR < 0.05 DEGs atFDR<0.10 DEGs at FDR<0.10
o m o

Amygdala Diencephalon

Frontal Cortex &0 min J
' 120 min ¥ 120 min
o0 i 0 ki Hypothalamus 60 min
JU m Telencephalon

120 min
120 min

Cross-species systems analysis of evolutionary toolkits of neurogenomic 120min "

response to social challenge 120 min
60 min

Michael C. Saul'!, Charles Blatti'?, Wei Yang'?, Syed Abbas Bukhari'?, Hagai Y. Shpigler'#,

Joseph M. Troy'®, Christopher H. Seward'?®, Laura Sloofman’®, Sriram Chandrasekaran’,

Alison M. Bell'389 Lisa Stubbs’?%% Gene E. Robinson™'°, Sihai Dave Zhao'''"", and Saurabh

Sinha®210", 63




Failure of Standard Approach

- Would like to find Gene Ontology
annotations that:

- Relate to DE gene sets of all three species
However, Gene Ontology annotation
quality varies greatly in three species

- Or relate to DE genes sets of the Mouse

However, the corresponding sets from the
other species might have greatly different
function

- Solution:

- Integrate Orthology and Gene Ontology
information in a three species network

- Find Gene Ontology terms that are
strongly connected to the DE gene sets of
all three species simultaneously

STICKLEBACK

MOUSE

Knowen

/

Statistical
Enrichment Test

\

/

Features

¢ 3dAl 3HNL1vV3d
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Findings with DRaWR

KNOWeNG 2:: ireor caience

- Annotations of two (red and green) conserved Gene Modules

D Biological Process Cellular Component Molecular Function
100 s . © - V-type ATPase, 1.5 5
Intracellular Muscle 0.2 V1 Damain Hydrogen-Exporting
Transport Contraction ) ATPase
Adhesion . .
Mitachondrial Fatty 1 Rho GTPase
L] j idati Bindin
5. Acid Oxidation AMP Deaminase g
HBAT SI_'-ock. Multienzyme Complex
5 » Proteins .
Actin Filament
[= GPCR 0.0- 0S5 Prolyl Binding
2 : Signaling eurciaicl
= 0 Structural " _ .
a Proteins Chaperonin- .
+ Containing Complex 0- Heat Shock
3 : . Protein
50 o : Binding .
] Zona Pellucid a
Purine s Ha;cep;; . -0.5- Mitechondrial Fatty
Metabolism . Acid Oxidation "
-100 50 o 50 0.4 00 04 -a5 0 05 10
Dimension X

.- Specific results for red module

» 14 #Annotated DRaWR GO Term Rank Fisher Pvalue

Branch GOID GO Description HB MM SB HB MM SB Min

G0:003236p intracellular sterol transport . - 0.040
BP G0:0071704 organic substance metabolic process 5 4 0.134 0.040

2.9%
, 3.5%
3.9%
6.8%

0.175 0.151 0.00:
BP GO0:0007160 cell-matrix adhesion .00
MF G0:0017048 Rho GTPase hinding
BP G0:0038032 termination of G-protein coupled receptq 11 1 44
MF GO0:0051015 actin filament binding 17 114 9
MF GO:0003755 peptidyl-prolyl cis-trans isomerase activi{ 22 42 17
BP G0:0031032 actomyosin structure organization 2 18

MF G0:0003779 actin binding 48 284 78

3

BP G0:0016043 cellular component organization 4 9 12
5
6

9.1%
: 2.7% 9.6% 9.6%
8.7% 10.0% 6.9% 8.3% 10.0%
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Gene Ranking / Function Prediction

Given:
Novel gene set(s) generated by a genomic researcher
Task:

Rank genes for the strength of their relationship to the
user’'s gene set(s)...

... in order to assess the coherence of the genes in the
experimental gene set or identify putative related genes

Figure from Arzt, et al. "Pipa: custom integration of protein interactions and pathways." G/-Jahrestagung. 2011.
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GeneMANIA Approach

Knowen

- GeneMANIA stands for

- Multiple Association Network Integration Algorithm

- Main Idea
- Given a gene set with a known functions
- And several gene-gene interaction affinity networks

- Find genes that relate to the functional set through the edges of the
given networks

- Approach
- Find out how well each network predicts the membership of the given
set
A linear regression-based algorithm that calculates a single composite
functional association network from multiple data sources
- Do label propagation guilt-by-association algorithm on the composite
functional association network

Genome Biel. 2008;9 Suppl 1:54. dei: 10.1138/gb-2008-8-51-c4. Epub 2008 Jun 27.

GeneMANIA: a real-time multiple association network integration
algorithm for predicting gene function.

Mostafavi 51, Ray D, Warde-Farley D, Grouios C, Momis O
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GeneMANIA Performance

Knowen

Participated in grand challenge for this function
prediction task on Mouse genes == me samme s

A critical assessment of Mus musculus gene function prediction
using integrated genomic evidence.

Pefis-Castilo LT, Tasan M, Myers CL, Lee H, Joshi T, Zhang C, Guan Y, Leone M, Pagnani A, Him W

Krumpelman €, Tian W, Cbozinski G, Qi ¥, Mostsfawi S, Lin GM, Bemiz GF, Gibbons FD, Lanchriet G, Qiu

J. Grant C. Bandeuoglu £, Hill DP, Warde-Farley D, Grouios C, Ray D, Blske JA, Deng M, Jordan MI,
oble WS, Maorris Q, Klein-Seetharaman J, Bar-Joseph F, Chen T, Sun F, Troyanskays OG, Marcotte EM,

Did extraordinary well in the competition and has
Improve method since then o

I MouseFunc winner
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Has easy to use webserver for running functional
prediction with small genesets
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of Health

In this Lecture and the Lab

* Biological Knowledge Networks

- KnowEnG Platform

* Network-Guided Sample Clustering Start a New Pipeline

« Network Based Stratification, COCA

: . ) About KnowEnG Pipelines
* Network-Guided Gene Prioritization

ProGENI Sample Clustering
- Pro
. .. . Feature Prioritization

° Gene Signatures and Similarity Methods

« LINCS. GSEA. Enrichr. DAVID Gene Set Characterization
* Network-based Gene Set Characterization Signature Analysis

- DRaWR Spreadsheet Visualization
°* Network-based Function Prediction Network Preparation

- GeneMANIA
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Thank you, Any Questions?

Thanks to Systems
Biology, we now have
a clear picture of

complex diseases!

Reprodu p of Pi e Meyts in
Ebrahim utriti why epidemiology matters." (2016). 70
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KnowEnG Resources

KNOWeNY::: o el

»

Also Check Out:
« Network Preparation for uploading your custom network to the platform for analysis
« Signature Analysis for mapping samples to signatures by correlation of omics profiles
e Tutorials:
* Quickstarts: https://knoweng.org/quick-start/
* YouTube: https://www.youtube.com/channel/UCjyllolCaZIGtZC20XLBOyg
* Resources:

» Data Preparation Guide: https://github.com/KnowEnG/quickstart-
demos/blob/master/pipeline readmes/README-DataPrep.md

« Knowledge Network Contents:
- Summary: https://knoweng.org/kn-data-references/
« Download: https://qgithub.com/KnowEnG/KN Fetcher/blob/master/Contents.md
* Research

+ Knowledge-guided analysis of omics Data (KnowEng cloud platform paper):
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000583

 TCGA Analysis Walkthrough: https://github.com/KnowEnG/quickstart-
demos/tree/master/publication_data/blatti et al 2019

* Source Code:
» Docker Images: https://hub.docker.com/u/knowengdev/
» Github Repos: https://knoweng.github.io/
* Other Cloud Platforms
» https://cgc.sbgenomics.com/public/apps#q?search=knoweng
* Contact Us with Questions and Feedback: knoweng-support@illinois.edu
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Using A Permanent KnowEnG Account

KNOWEeNG::: tareorcaiaiG

- For permanent account:

« (o to https://knoweng.org/analyze/
Click on “Create an account”

« Follow the instructions

PLATFORM IS NOW AVAILABLE !

LOGIN OR REGISTER

Welcome to the KnowEnG Platform !

Starting a Pipeline
KnowEnG enables knowledge-guided machine learning and graph mining
analysis on genomic datasets using scalable cloud computation and exploration
of results with interactive visualizations.

WATCH OUR VIDEO

TUTORIALS
KNOWLEDGE-GUIDED PIPELINES

Account Access

Researchers can upload their data in form of a spreadsheet and choose from several analysis
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Regression algorithms

Knowen

» Lasso: learns a linear model from the training data using only a
few features (sparse linear model)

B = argmﬁin (Ily — XBI)” + M8l

- Elastic Net: learns a linear model from the training data by linearly
combining ridge and Lasso regression regularization terms (a
generalization of both Lasso and ridge regression)

B = argmgn (Ily = XBI” + A2||B|2 + A1]1811)
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Regression algorithms

Knowen

« Kernel-SVR:

* Linear SVR learns a linear model such that it has at most g-deviation
from the response values and is as flat as possible

(Smola and Scholkopf, 1998)

« Kernel-SVR generalizes the idea to nonlinear models by mapping the
features to a high-dimensional kernel space
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Other Network Based Characterization Methods

KNOWeNG2:: e oreceience

Bioinformatics. 2009 Jan 1;25(1)%75-82. doi: 10.1093/bicinformatics/bin577. Epub 2005 Mov 5. 0 o
A novel signaling pathway impact analysis.
Tarca AL, Draghici S, Khatri P, Hassan S5, Mittal P, Kim JS, Kim CJ, Kusanovic JP. Romero R e e o e e o

o SPIA |dea: N ~

Combine with standard enrichment p-value that asks about the significance of the
number of perturbed genes in the pathway

« Perturbagen p-value, which asks if the amount of total accumulated perturbation
after one network propagation step is significant when considering the value it takes
with random controls

PLoS Comput Biol. 2014 Sep 11;109):e1003805. doi: 10,137 1/journal pcbi. 1003508, eCollection 2014 Sep.
SANTA: quantifying the functional content of molecular
networks.

Comish A", Markowelz F. _ ____, Shortest Path Length criteria

——~ -y i i [ - -

Network Association Kre-function Slgmf can&u
e E

K

Vertex weights

GO:0044451
GO:0070011

Frequency @
0 5 10 15 20 25
Randem permutations

Observed s

Frequency I
0 5 10 15 20 25
—
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Incorporating Meta-Paths

Knowen

DRaWR random walks on heterogeneous
networks make no consideration / memory of
the edge types they have followed

O Paths from G1 ->
— G2: meta-path:
type A a path defined by
type_A - type_ B sequence of edges
type C-type C types between two
type B -type C nodes
(x2)

Explore if similarity in a gene set can best be
described by particular types of meta-paths
amongst its genes.
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Ranking Genes for Disease

Knowen
- Initial Study:
53 MSigDB DE gene sets from separate cancer
studies .
=1 MSigDB
QueStiOn' | e MnleI;:ular Signatures
) ) s === Database

- If we hide a subset of genes disrupted by the
development of cancer, what types of networks are
best suited to recover them? |

04
0.4

- Evaluation: B ]

- Partition 75% of DE genes for training, 25% for testing | 2+

Comparing ROC Curves

o 03 4

Use DRaWR on KnowNet subnetworks and training £ 02

01 4 Excellent

data to rank genes o A

0 010202040505 070200 1

Report average AUCs of ranking using test genes as False positve rate
truth

—'Worthless
— Good
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Networks Under Consideration

- Gene-Gene Edge Types
- H: Homology
CoEx: Co-Expression
TM: Text Mining
Exp: Experimental Interaction

- Gene-Property Edge Types
PD: Protein Domains
GO: Gene Ontology

Knowen

Number of Species

* Human: only

e 2sp: Human and Mouse
Specificity of the edges

+ Specific: high confidence

edges

* Loose: all edges of that types
Combinations of Edge Types
* 1ty: One primary type

« 2ty: Primary type + homology
 Many: 3+ edge types
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Best Networks

Knowen

1l i avg K min K1 max G

Human many GO.TM.H loose
Human many All loose
2sp many GO.TM.H loose
2sp many All Loose
2sp 2ty GO.H Loose 0.706 0.578 0.862
. 2sp 2ty TM.H loose 0.701 0.567 0.813
° Gene Ontology an nOtat|OnS and Human many All Specific 0.701 0.590 0.838

Human many GO.TM.H Specific 0.701 0.584

TeXt Mlnlng relatlons are the Human many GO.TM loose 0.701 0.545-
beSt edge types for recoverlng 2sp many GO.TM.H Specific 0.699 0.579 0.848

2sp many All Specific 0.698 0.594 0.824

cancer set DE genes 25p many | GO.TM loose 0.695 0.537 10.863

2sp 2ty GO.H specific 0.694 0.555  0.853

Human 1ty Text Mining loose 0.693 0.544 0.838

, Human Ity Gene Ontolog: |.ocose 0.690 0.541 @ 0.851

° Networks Wlth a” edges (Loose) 2sp 1ty Genhe Ontology |oose 0.689 0.538  0.848

Human many GO.TM Specific 0.675 0.53% 0.831

are better at recovering gene 2wp 2ty | TMA bpectic | 0672 0se 0797
than networks with only high e s o o o
Confldence edges 2sp 1ty Gene Ontology Specific 0.666 0.515 0.844

Human 1ty Gene Ontology Specific 0.664 0.534  0.842

2sp 2ty CoE.H loose 0.663 0.508 0.827

2sp 2ty Exp.H Specific 0.656 0.549 0.769

o Proteln Domaln an notatlons are Human 1ty Text Mining  specific 0.656 0.555 0.812
R 2sp 2ty Exp.H loose 0.647 0533 0.763

poor pred|CtO rs for cancer DE 2sp 2ty PPLH Specific 0.644 0515 0.746

Human 1ty Co-expression [oose 0.629 0.498 0.840

genes, but great for embryonic tuman  lty | Experimentsl | fpecfic | 0504 0455 0755
development Human 1ty Co-expression Specific 0.601 0.353-

Human 1ty Prot-Prot Inter oose 0.598 0.475 0.730
Z5p PR COE.H LPECITIc U.DYs U4/ U745
2sp 2ty PD.H loose 0.592 0.481 0.701

Human Ity Experimental | loose 0.582 0.424 0.778
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