Introduction to RNA-Seq & Transcriptome Analysis

Jessica Holmes

Introduction

Steps in gray have been performed already. For this lab, you'll focus on the last step in **black**

- a) Filter and trim reads using <u>fastp</u> or <u>trimmomatic</u>
- b) Create <u>Salmon</u> index & prep files
- c) Use <u>Salmon</u> to pseudo-align RNA-Seq reads to mouse transcriptome
- d) Use <u>multiqc</u> to summarize results of each step
- e) Use R packages to clean, sort, and filter data
- f) Use edgeR and limma to find differentially expressed genes

Step 1: Start Jupyter Hub

 Go to <u>https://biocluster.igb.illinois.edu/</u>
 Click on Enter under Jupyter Hub

<u>и/</u> С	Cluster Monitoring Monitor Biocluster's current usage Enter	Accounting View job accounting and billing Enter	
	Jupyter Hub Run Jupyter Notebooks on the Biocluster Enter	SLURM Script Generator Generates SLURM scripts easily Enter	

Step 1: Start Jupyter Hub

- Enter login credentials assigned to you. ٠
- Example username: class01 ٠

٠

٠

💭 Jupyter <mark>hub</mark>		
	Sign in	
	netID:	
	class01	
	IGB Password:	
	••••••	
	Sign in Reset Password	
		J

- If you've logged in during a previous lab, then you may not see this screen. Move on to next slide.
- I you have not logged in during a previous lab and you don't see this, then you may be logged in with a different account. Please log out first (upper right corner) and then sign in with your assigned credentials.

Step 1: Start Jupyter Hub

- Select partition: classroom
- Specify runtime: **012:00:00**
- Specify CPUs: 2
- Click on Start

Select a partition	
classroom (private)	~
Specify runtime (HHH:MM:SS format, 120hr max)	
012:00:00	
Specify Number of CPUs/Cores	
2	\$
Specify Memory (GBs)	
15	\$
Specify Number of GPUs	
0	\$
Start	

Step 2: Start Terminal & Copy Materials

• Click on **Terminal**

🛛 Launcher	+	-				
	Notebook	Bash	R 4.3.2	R 4.4.0		71
	>_ Console					4
	Python 3.10.1	Bash	R 4.3.2	R 4.4.0		
	\$_ Other					-
	\$_ Terminal	Text File	Markdown File	Python File	R File	

Step 2: Start Terminal & Copy Materials

The following commands will copy a folder filled with necessary files for today's lab.

```
# Note: ~ is a symbolic of your home directory
$ cd ~/
# Copies exercise materials to your home directory
$ cp -r /home/classroom/mayo/2025/04-Bulk-RNA-Sequencing/mouse-
rnaseq-2025/ .
```

Step 2: Start Terminal & Copy Materials

Navigate to the mouse-rnaseq-2025/ directory and look at what the folder contains:

\$ tree mouse-rnaseq-2025/	Name	Description	
mouse-rnaseq-2025/ 	tx_info_GRCm39_R S_2024_02.csv	Contains mouse transcript IDs, gene IDs, gene symbols, and gene products. This info was manually pulled from an annotation file (GFF/GTF) to aid in summing transcripts to the gene level.	
└── SalmonSummarizedOutput.RData └── Stats	SalmonSummarized Output.Rdata	Salmon transcript-level counts and Salmon run metadata.	
RNA-Seq_R_stats_2025.ipynb	Targets0.txt	Metadata about the mouse dataset that we've collected.	
└── summarizeFit.R	RNA- Seq_R_stats_2025.i pynb	R notebook that contains code we'll run to complete our statistical analysis. This needs to be in the directory you wish to work in.	
	summarizeFit.R	An R script that we'll utilize later.	

Step 3: Statistical Analysis in R notebook

First navigate to the mouse-rnaseq-2025 folder double clicking on the icons available on the left-hand side of Jupyter. If you are already in your home directory, you can skip to step 4.

1 2 Go to home/ folder 1. Filter files by name Q / home / Go to a-m/ folder 2. **I** / Last Modified Name Name Last Modified Go to your unique 3. 7 days ago bin 3 years ago 🖿 a-m := class##/ folder 2 years ago boot 6 years ago apps dev 4 months ago 2 years ago ces Go to mouse-rnaseq-4. etc 5 days ago classroom a year ago 6 months ago gpfs 2025/ folder 3 months ago groups 3 months ago home 2 years ago ha IGBDATA 3 months ago lib 3 years ago labs 20 days ago 3 years ago lib64 2 years ago mirror media 3 years ago 2 hours ago n-z 6 months ago misc

mnt

3 years ago

Step 3: Statistical Analysis in R notebook

First navigate to the mouse-rnaseq-2025 folder double clicking on the icons available on the left-hand side of Jupyter. If you are already in your home directory, you can skip to step 4.

Step 4: Statistical analysis in R notebook

Now open the R notebook, RNA-Seq_R_stats_2025.ipynb, to begin your analysis. Everything will be performed and explained within this notebook. We'll come back to these slides when we need to end this lab session.

Step 5: Ending Jupyter Hub

• If you set the runtime of your Jupyter Hub instance to be for a shorter time than the workshop day, you may see a message like this:

- Before this happens make sure to save the R notebook if you made any changes to it.
- If you still have time left on your Jupyter hub session, you can end it early by going to File -> Hub Control Panel. Then click the Stop My Server button. This helps free up resources so that others can use the Biocluster.

Key Insights

- Arguably the most time-consuming and important step is getting all your data into R and in the right format and order. This ensures that everything going forward will be accurate and valid.
- Salmon transcript counts should be summed to the gene-level to improve accuracy.
- You can preview your raw data, but the counts need to be filtered and normalized before performing differential gene expression (DGE) analysis.
- An MDS plot can allow us to see if our samples are clustering by our treatment group or other metadata.
- We can create our own unique contrasts to test for our DGE analysis, and pull out detailed information on our up and down-regulated genes.
- This is a short snippet of what you can do. Other analyses include venn diagrams, heatmaps, WGCNA, annotation, and more!