CLINICAL VARIANT INTERPRETATION LAB Joe Farris, Ph.D. Introduction to Computational Genomics June 25th, 2024 # **ACMG Criteria** | | ← Benign → ← | | Pathogenic | | | | |---|--|---|---|---|---|---| | | Strong | Supporting | Supporting | Moderate | Strong | Very strong | | Population
data | MAF is too high for
disorder BA1/BS1 OR
observation in controls
inconsistent with
disease penetrance BS2 | | | Absent in population databases PM2 | Prevalence in
affecteds statistically
increased over
controls PS4 | | | Computational
and predictive
data | | Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3 | Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3 | Novel missense change
at an amino acid residue
where a different
pathogenic missense
change has been seen
before PM5
Protein length changing
variant PM4 | Same amino acid
change as an
established
pathogenic variant
PS1 | Predicted null
variant in a gene
where LOF is a
known
mechanism of
disease
PVS1 | | Functional
data | Well-established
functional studies show
no deleterious effect
BS3 | | Missense in gene with
low rate of benign
missense variants and
path. missenses
common PP2 | Mutational hot spot
or well-studied
functional domain
without benign
variation PM1 | Well-established
functional studies
show a deleterious
effect PS3 | | | Segregation
data | Nonsegregation with disease BS4 | | Cosegregation with disease in multiple affected family members PP1 | Increased segregation data | → | | | De novo
data | | | | De novo (without
paternity & maternity
confirmed) PM6 | De novo (paternity and
maternity confirmed)
PS2 | | | Allelic data | | Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2 | | For recessive
disorders, detected
in trans with a
pathogenic variant
PM3 | | | | Other
database | | Reputable source w/out
shared data = benign BP6 | Reputable source
= pathogenic PP5 | | | | | Other data | | Found in case with
an alternate cause
BP5 | Patient's phenotype or
FH highly specific for
gene PP4 | | | | # **Case 1: Guided Walkthrough** I will walk you through the variant classification with active discussion from the class # Case #1 ### Patient phenotype: Abnormality of male external genitalia, high palate, retrognathia, low-set ears, patent ductus arteriosus, hypoglycemia, abnormal pattern of respiration, ascending tubular aorta aneurysm, abnormality of the external nose, abnormal digit morphology, fetal choroid plexus cysts, short fetal femur length, heart murmur, abnormal atrioventricular valve physiology ### Variant identified via trio genome: - CCDC22:c.1634A>G, Lys545Arg - Inheritance: maternal (X-linked gene). Follow-up sequencing found the variant was not inherited from the mother's parents. | Criteria being considered | Strength being applied | Evidence | Points | |---------------------------|------------------------|----------|--------| ### PM2 # **Population Frequencies** *Prediction scores were normalized to allow integrated graph view | Functional Coding | | |-------------------|-----------------------------| | Revel | Uncertain (0.38) | | AlphaMissense | Benign (Moderate) (0.085) | | Eve | (N/A) | | Varity | Deleterious (low) (0.42) | | MUT Assesor | Med (2.04) | | SIFT | Benign (Supporting) (0.128) | | spliceAI AG: | 0.01 (1) | |--------------|------------| | spliceAI AL: | 0.00 (-40) | | spliceAI DG: | 0.26 (-23) | | spliceAI DL: | 0.92 (1) | Table 1. Points awarded per de novo occurrence | | Points per Proband | | | |--|--------------------|-----------------|--| | Phenotypic consistency | Confirmed de novo | Assumed de novo | | | Phenotype highly specific for gene | 2 | 1 | | | Phenotype consistent with gene but not highly specific | 1 | 0.5 | | | Phenotype consistent with gene but not highly specific and high genetic heterogeneity* | 0.5 | 0.25 | | | Phenotype not consistent with gene | 0 | 0 | | ^{*}Maximum allowable value of 1 may contribute to overall score <u>Table 2. Recommendation for determining the appropriate ACMG/AMP evidence strength</u> level for de novo occurrence(s) | Supporting
(PS2_Supporting or
PM6_Supporting) | Moderate
(PS2_Moderate or
PM6) | Strong
(PS2 or PM6_Strong) | Very Strong
(PS2_VeryStrong or
PM6_VeryStrong) | |---|---|-------------------------------|--| | 0.5 | 1 | 2 | 4 | Conditions with X-linked inheritance: if the variant occurs *de novo* in an unaffected carrier mother, and family history is consistent - i.e., she has no affected brothers/other male relatives apart from her affected son(s) – *de novo* criteria may be applied despite the fact that she is unaffected. ### PS₂ # Ritscher-Schinzel syndrome 2 ### **INHERITANCE** - X-linked recessive ### **GROWTH** Other - Growth delay, postnatal ### **HEAD & NECK** Head - Large head circumference ### Face - Broad forehead - Short philtrum ### Eyes - Upslanting palpebral fissures - Hypertelorism ### Mouth - Protruding tongue - Abnormal dentition (in some patients) ### Neck - Broad neck ### **CARDIOVASCULAR** Heart - Ventricular septal defect - Atrial septal defect ### Vascular - Patent ductus arteriosus ### **GENITOURINARY** External Genitalia (Male) - Cryptorchidism ### **SKELETAL** Skull - Large anterior fontanelles ### Spine - Scoliosis ### Hands - Distal digital anomalies - Syndactyly - Camptodactyly - Clinodactyly - Hypoplastic distal phalanges ### Feet - Overriding toes - Broad halluces ### SKIN, NAILS, & HAIR Hair - Low posterior hairline - Aplasia cutis (in some patients) ### **MUSCLE, SOFT TISSUES** - Hypotonia ### **NEUROLOGIC** Central Nervous System - Delayed psychomotor development - Poor speech - Dandy-Walker malformation - Cerebellar hypoplasia ### **MISCELLANEOUS** - Variable features - Two unrelated families have been reported (last curated November 2015) # Case 2: Group Walkthrough #1 In breakout groups, walk through your variants and apply criteria you think are appropriate based on publically available databases. # Case #2 ### Patient phenotype: Retinitis pigmentosa ### Variant identified via trio exome: • RPGR:c.905G>A, Cys302Tyr • Transcript: NM_001034853.2 • Inheritance: Unknown, but variant is on the X-chromosome | Criteria being considered | Strength being applied | Evidence | Points | |---------------------------|------------------------|----------|--------| ### PM2 # **Population Frequencies** # PS4 - •The variant was observed in three males with retinitis pigmentosa in one family. (PMID: 10937588) - •The variant was observed in a 56 y/o male with retinitis pigmentosa in a Chinese cohort. Age of onset was 3 y/o. (PMID: 32100970) - •The variant was observed in at least one family member from a large retinal degeneration cohort (<u>PMID: 32037395</u>) (They applied PP1 indicating multiple family members were observed). # PS3 Cys302Tyr was shown to reduce the interaction between RPGR and RPGRIP1α by yeast hybridization assay (PMID: 23213406) ### **Predictions** | Functional Coding | | |-------------------|--------------------------------| | Revel | Deleterious (Moderate) (0.92) | | AlphaMissense | Deleterious (Moderate) (0.959) | | Eve | Deleterious (0.93) | # Case 3: Group Walkthrough #2 In breakout groups, walk through your variants and apply criteria you think are appropriate based on publically available databases. # Variant #3 # Variant #3 ### Patient phenotype: • Pulmonary fibrosis, shorted telomeres ### Variant identified via trio genome: - *RTEL1:*c.101A>G, Q34R - Inheritance: Paternal - Family history: 1 affected brother, 1 unaffected sister. Father and paternal uncle are affected. | Criteria being considered | Strength being applied | Evidence | Points | |---------------------------|------------------------|----------|--------| # Case Segregation Data (PP1) Important Considerations Can be incorporated as part of the assessment in case-level evidence. However, the evidence for pathogenicity should be carefully applied. Segregation signifies evidence for linkage of a locus, rather than direct variant-specific pathogenicity. There are two approaches to calculate or estimate the strength of evidence from a pedigree: (1) affected individuals per Sherloc estimates and (2) the probability of observed co-segregation (Meiosis Method $(1/2)^m$). The variable "m" is the number of meioses of the variant of interest in a family. See the example pedigree. | PP1
Strength | # Affected
Individuals | Meiosis Method (1/2) ^m | |----------------------|--------------------------------|---| | Weak
(Supporting) | AD: ≥3
AR: ≥2 | ≤1/8 in 1 family
≤1/4 in >1 family | | Moderate | AD: ≥6
AR: ≥3, ≥2 families | ≤1/16 in 1 family
≤1/8 in >1 family | | Strong | AD: ≥10
AR: ≥5, ≥2 families | ≤1/32 in 1 family
≤1/16 in >1 family | $$(1/2)^3 \times (1/2) = 1/16$$ ### PM2 # **Population Frequencies** | Revel | Benign (Moderate) (0.1) | ~ | |---------------|-------------------------|---| | AlphaMissense | Benign (Strong) (0.063) | ~ | | Eve | (N/A) | | | Varity | Benign (low) (0.12) | ~ | | MUT Assesor | Neutral (0.46) | ~ | By REVEL score, you would apply BP4_moderate ### **INHERITANCE** - Autosomal dominant ### RESPIRATORY Lung - Pulmonary fibrosis - Dyspnea - Hepatopulmonary syndrome (in some patients) - Dilated pulmonary vasculature with shunting ### **ABDOMEN** Liver - Hepatopulmonary syndrome (in some patients) - Portal hypertension - Nodular regenerative hyperplasia seen on liver biopsy ### Spleen - Splenomegaly ### SKELETAL Hands - Digital clubbing ### **MUSCLE, SOFT TISSUES** - Ascites ### LABORATORY ABNORMALITIES - Decreased telomere length in lymphocytes - Elevated liver enzymes ### **MISCELLANEOUS** - Adult onset - Variable manifestations - Incomplete penetrance # Case 4: Group Walkthrough #3 In breakout groups, walk through your variants and apply criteria you think are appropriate based on publically available databases. # Case #4 ### Patient phenotype: Developmental regression, ataxia, seizures, cerebellar atrophy, nystagmus, Dandy-Walker malformation ### Variant identified via trio genome: - In trans variants: - *PMPCA*:c.1204C>T, R402* - *PMPCA*:c.667C>T, R223C | Criteria being considered | Strength being applied | Evidence | Points | |---------------------------|------------------------|----------|--------| | | Variant | 1 R402* | | | | | | | | | | | | | | | | | | | Variant 2 | 2 R223C | | | | | | | | | | | | | | | | | # Variant 1: PVS1 LEGEND drag to resize # Variant 1: PVS1 - PMPCA is a peptidase which matures mitochondrial proteins - A377T homozygote led to decreased PMPCA protein levels - Led to increased pre-processed FXN and decreased mature FXN, similar to levels seen in FRDA patients ### Variant 1: PM2 # **Population Frequencies** # Variant 2: PM3 A severe form of autosomal recessive spinocerebellar ataxia associated with novel *PMPCA* variants Yoko Takahashi ^{a,*}, Masaya Kubota ^b, Rika Kosaki ^c, Kenjiro Kosaki ^d, Akira Ishiguro ^a ### Patient had in trans variants: R223C and D285lfs*16 Same missense variant in trans with a LOF variant ### **Patient history:** - **birth to 7 months:** sitting & standing at 7 months - **16 months:** developmental regression - 4 years: nystagmus, postural tremors, cogwheel rigidity, atrophy of the cerebellar vermis and T2 hyperintensities in the cerebellar cortex. PLA2G6 was suspected until WES revealed bilateral *PMPCA* variants. Highly similar genotype leading to a highly similar phenotype. Table 1. Points awarded per in trans proband | | Points per Proband | | |---|--------------------|----------------------| | Classification/Zygosity of other variant ¹ | Confirmed in trans | Phase unknown | | Pathogenic or Likely pathogenic variant | 1.0 | 0.5 (P)
0.25 (LP) | | Homozygous occurrence (max point 1.0) | 0.5 | N/A | | Uncertain significance variant (max point 0.5) | 0.25 | 0.0 | ¹All variants should be sufficiently rare (meet PM2 specification); P - Pathogenic; LP - Likely pathogenic Table 2. Recommendation for determining the appropriate evidence strength level for PM3 | PM3_Supporting | PM3 | PM3_Strong | PM3_VeryStrong | |----------------|-----|------------|----------------| | 0.5 | 1.0 | 2.0 | 4.0 | # Variant 2: PP3 ### **Predictions** | Functional Coding | | | |-------------------|--------------------|--| | Revel | Uncertain (0.35) | | | AlphaMissense | Uncertain (0.567) | | | Eve | Deleterious (0.75) | | ### Variant 2: PP3 Splice-Al predicts weakening of canonical acceptor. If cryptic acceptor is used, the protein is thrown out of frame. ### Variant 2: PM2 ### **Population Frequencies** Threshold (i) 1.5% BS1 1% PM2 <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% N/A N/A gnomAD (Max) gnomAD gnomAD (Genome) gnomAD (Exome) TOPMed Bravo ExAC India DB Total number (Aggregated) of Homozygote 1 Alleles of 44.896 gnomAD (Max) 0.0022% 0 homozygote Very Rare variant in gnomAD (Max) N/A Individuals 17 Alleles of 1.612.006 gnomAD (Aggregated) 0.0011% 0 homozygote Very Rare variant in gnomAD (Aggregated) N/A Individuals 2 Alleles of 152.170 gnomAD (Genome) 0.0013% 0 homozygote V Very Rare variant in gnomAD (Genome) N/A Individuals **15** Alleles of **1,459,836** gnomAD (Exome) 0.001% 0 homozygote Very Rare variant in gnomAD (Exome) N/A Individuals # **QUESTIONS** & ANSWERS