

CLINICAL VARIANT INTERPRETATION

USING ACMG/AMP CRITERIA TO CLASSIFY VARIANTS

Joe Farris, Ph.D.

CTSC6160 Friday, April 25, 2025

Introduction

In this portion of the class, you will learn:

- The importance of ACMG criteria
- The 5 variant classifications
- The type of evidence considered by ACMG criteria
- An overview of how this evidence is weighted

Review: Terminology ...

To make sure we're all on the same page, some terms:

Variants

- Missense variant: variant leading to a protein change (ex. Arg515Ser)
- Nonsense variant: variant leading to the introduction of a premature stop codon (ex. Ser44Ter)
- Silent variant: variant leading to no protein change (but may have an effect on splicing)
- Indel: an (usually small) insertion and/or deletion
- Loss of function (LOF) variant: a variant leading to truncation of the gene / protein.

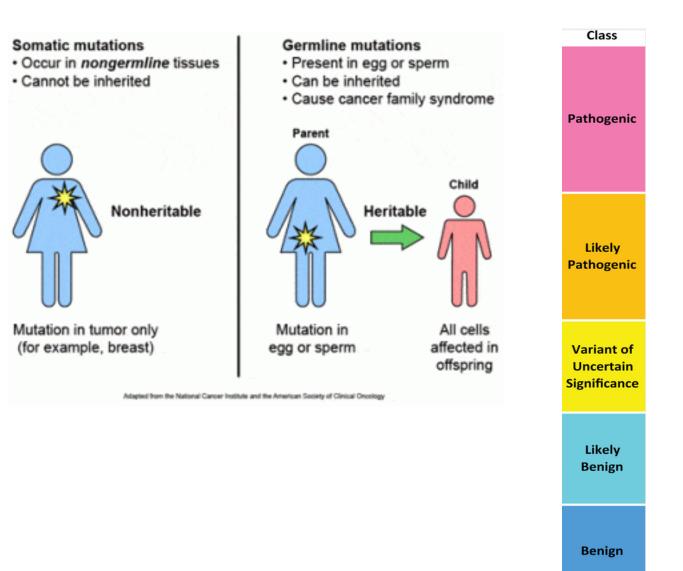
Other terms

- **Proband:** the individual presenting with disease
- **Penetrance:** the proportion of individuals with a pathogenic variant in a given gene who express the associated trait (disease).

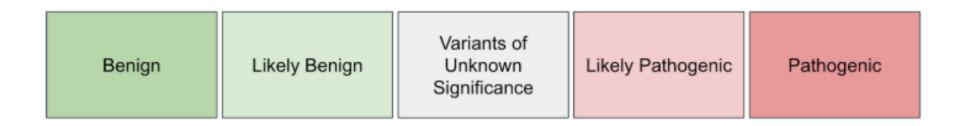
Genome Sequencing Yields Many Variants

4.1 – 5.0 million total variants 40,000 – 250,000 rare variants Rare variants in disease relevant genes (n = ?) High impact, rare variants in disease relevant genes (n = ?)

• How do we determine which variants are disease-causing in a consistent way?


ACMG Criteria 2015

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology


Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

These recommendations primarily apply to genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes.

It **is not intended** for the interpretation of somatic variation, pharmacogenomic variants, or variants in genes associated with multigenic non-Mendelian complex disorders.

ACMG Criteria 2015

ACMG Criteria 2015

	< Ber	^{nign} → ←	< Pathogenic					
	Strong	Supporting	Supporting	Moderate	Strong	Very strong		
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4			
Computational and predictive Jata		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1		
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3			
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	>			
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2			
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3				
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5					
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4					

https://pubmed.ncbi.nlm.nih.gov/25741868/

- The American College of Medical Genetics (ACMG) criteria provide a common language for variant classification.
- 8 categories of evidence for either benignity or pathogenicity
- Evidence is ranked in different "strengths"

ACMG Criteria Beyond 2015 ...

ACMG Publications

Major papers

- 2015 original paper https://pubmed.ncbi.nlm.nih.gov/25741868/
- 2019 overview of updates https://pmc.ncbi.nlm.nih.gov/articles/PMC6885382/
- 2020 recommendations for CNVs <u>https://pubmed.ncbi.nlm.nih.gov/31690835/</u>

Specific criteria updates

- End of the "reputable source" criteria (BP6 / PP5): <u>https://pubmed.ncbi.nlm.nih.gov/29543229/</u>
- Updated recommendations for BA1: <u>https://pubmed.ncbi.nlm.nih.gov/30311383/</u>
- Updated recommendation for PM3: <u>https://clinicalgenome.org/site/assets/files/3717/svi_proposal_for_pm3_criterion_version_1.pdf</u>
- Updated recommendation for PS2: <u>https://clinicalgenome.org/site/assets/files/3461/svi_proposal_for_de_novo_criteria_v1_1.pdf</u>
- Calibration of in silico tools for PP3 / BP4: <u>https://pubmed.ncbi.nlm.nih.gov/36413997/</u>
- Updated recommendation for PVS1: <u>https://pubmed.ncbi.nlm.nih.gov/30192042/</u>
- Applying PVS1 to splicing variants: <u>https://pubmed.ncbi.nlm.nih.gov/37352859/</u>
- PM2 transition to PM2_supp: <u>https://clinicalgenome.org/site/assets/files/5182/pm2___svi_recommendation__approved_sept2020.pdf</u>

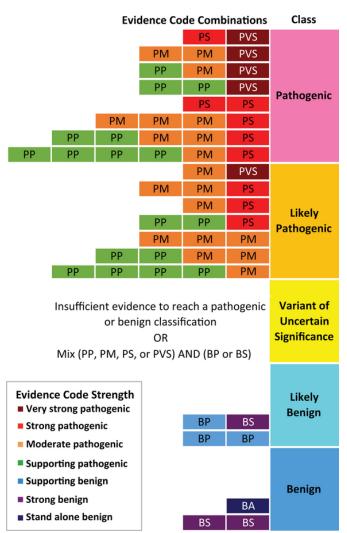
Miscellaneous

Transition to Bayesian (points) system - <u>https://pubmed.ncbi.nlm.nih.gov/29300386/</u>

Strengths of ACMG Criteria

The strength of most criteria is no longer static:

Criteria code	Brief Description	Strength 2015	Strength Range 2025
PVS1	Loss of function	very strong	moderate – very strong
PS1	Same AA change	strong	supporting – strong
PS2	De novo	strong	supporting – very strong
PS3	Functional evidence	strong	supporting – very strong
PS4	Prevalence in affected pop.	strong	supporting – strong
PM1	Functional domain	moderate	supporting – strong
PM2	Rare in pop. controls	moderate	supporting
PM3	In trans	moderate	supporting – very strong
PM4	Length changing	moderate	supporting – moderate
PM5	Same position, different AA	moderate	supporting – strong
PM6	Assumed <i>de novo</i>	moderate	supporting – very strong
PP1	Cosegregation	supporting – strong	supporting – strong
PP2	Intolerant to missense	supporting	supporting
PP3	In silico	supporting	supporting – moderate
PP4	Specific phenotype	supporting	supporting – moderate
PP5	Reputable source	supporting	discontinued


Strengths of ACMG Criteria

The strength of most criteria is no longer static:

Criteria code	Brief Description	Strength 2015	Strength Range 2025
BA1	Population prevalence	stand alone	stand alone
BS1	MAF is too high	strong	supporting – strong
BS2	Present in healthy adults	strong	supporting – strong
BS3	Functional evidence	strong	supporting – strong
BS4	Non-segregation	strong	supporting – strong
BP1	Missense in a LOF gene	supporting	supporting
BP2	In cis with recessive / in trans with dominant	supporting	supporting
BP3	Indel in a repeat region	supporting	supporting
BP4	In silico	supporting	supporting – moderate
BP5	Alternative cause found	supporting	supporting
BP6	Reputable source	supporting	discontinued
BP7	Splice variant with no prediction	supporting	supporting

ACMG Point System

Being Phased Out

Туре	Strength	Bayesian points	
	very strong	+8	
Dothogonio	strong	+4	
Pathogenic	moderate	+2	
	supporting	+1	
	strong	- 4	
Benign	moderate	- 2	
	supporting	- 1	

Score Range	Class
≤ -6	Benign
-5 to -1	Likely benign
0 to 5	VUS
6 to 9	Likely pathogenic
≥ 10	Pathogenic

- Rather than combinations of codes, classifications are now encouraged to be assigned with a Bayesian classification framework (<u>Tavtigian 2018</u>)
- By 2026, criteria code names will be changed, and the points system will be made "official".
 - The underlying logic of the criteria will remain the same.

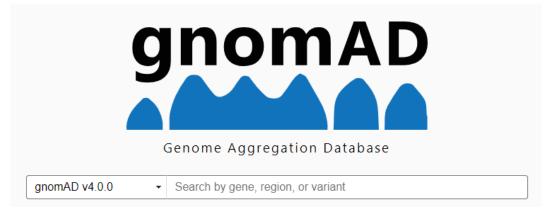
Now

Summary of Overview

- ACMG criteria give us a common language with which we can characterize variants
- Variant interpretation involves both assigning criteria and determining the strength of the criteria assigned
 - Strength of criteria has evolved over time
- Summation of the assigned criteria's associated Bayesian points yields a final classification

Specific Criteria

In this portion of the class, you will learn:


- How to apply the specific ACMG criteria.
- How strength of the criteria is determined.
- Tools / databases used to apply criteria.
- Specific examples of the criteria being applied to variants.

Population Data: Control Populations (BA1, BS1, BS2, PM2)

Criteria assignment:

- The reference control database is gnomAD, but other databases are available
- PM2: variant is absent/rare in control populations.
 - "Rarity" is specific for the gene, inheritance pattern, and penetrance of the disorder.
 - Max MAF < 0.0005 is often used as a "general" cutoff
- BA1: allele frequency is > 5% in control populations.
- BS1: allele frequency is greater than expected for the disorder (i.e., more common than the known incidence / carrier frequency of the disease).
- BS2: observed in homozygous state (for recessive disorders), heterozygous state (dominant disorders), or hemizygous state (X-linked disorders) in healthy adults for fully penetrant diseases with early onset

Population Data: gnomAD

- 730,947 exomes and 76,215 genomes from individuals without severe pediatric disease
 - 5X larger than in 2023
- Allows for analysis of whether variants are rare or common in the generally healthy population
- Caveats:
 - Data has a sample bias towards individuals of European descent
 - Not as useful for adult-onset disorders

Population Data: gnomAD

Example: *ARID1B* variants:

Variant ID	Source	HGVS Consequence	VEP Annotation	LoF Curation	Clinical Significance	Flags	Allele Count	Allele Number	Allele Frequency	Number of Homozygotes
6-156779262-G-GCGC	E G	p.Pro533dup	 inframe insertion 		Benign		85948	1145648	7.50e-2	3584 ^
6-156829362-A-G	E G	p.lle643Val	missense		Benign		26369	1614148	1.63e-2	268
6-157186370-C-T	E G	p.Pro650Leu +	missense				23619	466958	5.06e-2	1266
6-157186564-G-C	E G	p.Gly715Arg +	missense				16741	470132	3.56e-2	397
6-156778871-CGGA-C	E G	p.Gly402del	inframe deletion		Benign/Likely benign		15204	1339750	1.13e-2	89
6-156778292-A-ACAGCAG	G	p.Gln213_Gln214dup	inframe insertion		Benign/Likely benign		11870	1517714	7.82e-3	32
6-156778665-G-A	E G	p.Gly329Ser	missense		Benign		8376	1488164	5.63e-3	32
6-156778268-C-CCAG	G	p.Gln214dup	inframe insertion		Benign/Likely benign		8240	1536626	5.36e-3	43
6-156777692-G-GGCA	E G	p.Ala14dup	inframe insertion		Benign		7474	148240	5.04e-2	237
6-156778889-CGGA-C	E G	p.Gly411del	inframe deletion		Benign		5933	1314634	4.51e-3	2
6-156777879-G-A	E G	p.Gly67Ser	missense		Benign		5667	1431612	3.96e-3	212
6-156778268-C-CCAGCAG	E G	p.Gln213_Gln214dup	inframe insertion		Benign/Likely benign		5377	1536714	3.50e-3	93
6-157206358-TGAC-T	E G	p.Asp1864del	inframe deletion		Benign		4769	1614046	2.95e-3	145
6-157201089-A-T	E G	p.Met1622Leu	missense		Benign		4233	1614190	2.62e-3	103
6-156778847-G-GGGC	E G	p.Gly402dup	inframe insertion		Benign/Likely benign		3034	1403452	2.16e-3	20
6-156778292-A-ACAG	E G	p.Gln214dup	inframe insertion		Benign/Likely benign		2918	1518244	1.92e-3	14
6-156778847-GGGCGGCG	E G	p.Gly400_Gly402del	 inframe deletion 		Benign/Likely benign		2790	1403448	1.99e-3	10
6-156778889-CGGAGGA-C	E G	p.Gly410_Gly411del	inframe deletion		Benign/Likely benign		2746	1366178	2.01e-3	14
6-156778943-T-TGTGGCG	EG	p.Val422_Ala423dup	 inframe insertion 		Benign/Likely benign		2600	1272008	2.04e-3	3

Population Data: Control Populations (BA1, BS1, BS2, PM2)

Strength determination:

- <u>PM2 is recommended to be applied only at supporting</u>
 - Rare variants are common
 - See <u>ClinGen PM2 recommendation 2020</u>
- BA1: automatically makes a variant benign. These variants are often filtered out before any classification.
- BS1: usually applied at strong, but for certain genes, MAF cutoffs have been defined for applying at supporting. Difficult to apply because the disease incidence is not usually known for rare disorders.
- BS2: usually applied at strong, but for some genes, defined counts are allowed at supporting.

Population Data: Exceptions to BA1

Gene	Variant	Classification	applied (not including BA1 or BS1)	ClinVar ID	ClinGen Allele Registry ID	Chr	Position	Ref	Alt	ExAC Source Pop	ExAC Source Pop MAF	ClinVar disease entry
ACAD9	NM_014049.4: c44 41dupTAAG	VUS	PS3_Supporting; BS2	1018	CA114709	3	128,598,490	с	CTAAG	AFR	0.1261	Deficiency of Acyl- CoA dehydrogenase family, member 9
GJB2	NM_004004.5: c.109G>A (p.Val37Ile)	Pathogenic	PS4; PP1_Strong; PM3_VeryStrong; PS3_Moderate	17023	CA172210	13	20,763,612	с	т	EAS	0.07242	Deafness, autosomal recessive
HFE	NM_000410.3: c.187C>G (p.His63Asp)	Pathogenic*	PS4	10	CA113797	6	26,091,179	с	G	NFE	0.1368	Hereditary hemochromatosis
HFE	NM_000410.3: c.845G>A (p.Cys282Tyr)	Pathogenic*	PS4; PP3	9	CA113795	6	26,093,141	G	A	NFE	0.05135	Hereditary hemochromatosis
MEFV	NM_000243.2: c.1105C>T (p.Pro369Ser)	VUS	PM3; PM5	2551	CA280114	16	3,299,586	G	A	EAS	0.07156	Familial Mediterranean fever
MEFV	NM_000243.2: c.1223G>A (p.Arg408Gln)	VUS	PM3; PM5	2552	CA280116	16	3,299,468	с	т	EAS	0.05407	Familial Mediterranean fever
PIBF1	NM_006346.2: c.1214G>A (p.Arg405Gln)	VUS	PM3; BS2	217689	CA210261	13	73,409,497	G	A	AMR	0.09858	Joubert syndrome
ACADS	NM_000017.3: c.511C>T (p.Arg171Trp)	vus	PS3_Moderate; PM3; PP3	3830	CA312214	12	121,175,678	с	т	FIN #	0.06589	Deficiency of butyryl- CoA dehydrogenase
втр	NM_000060.4: c.1330G>C (p.Asp444His)	Pathogenic	PS3; PM3_Strong; PP3; PP4	1900	CA090886	3	15,686,693	G	с	FIN #	0.05398	Biotidinase deficiency

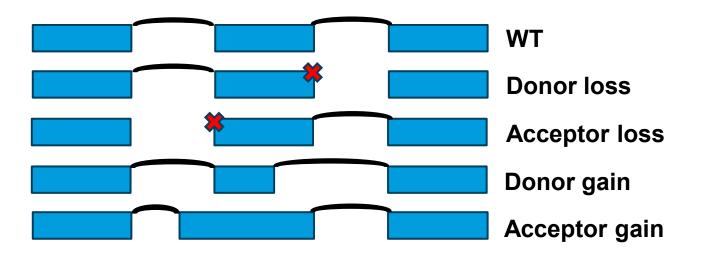
*ACMG/AMP criteria selected does not match the classification as these variants are common low-penetrant variants and the ACMG/AMP guidelines are not designed for this variant type

Detected at >5% MAF only in Finnish population (see text).

Genomic coordinates on build GRCh37

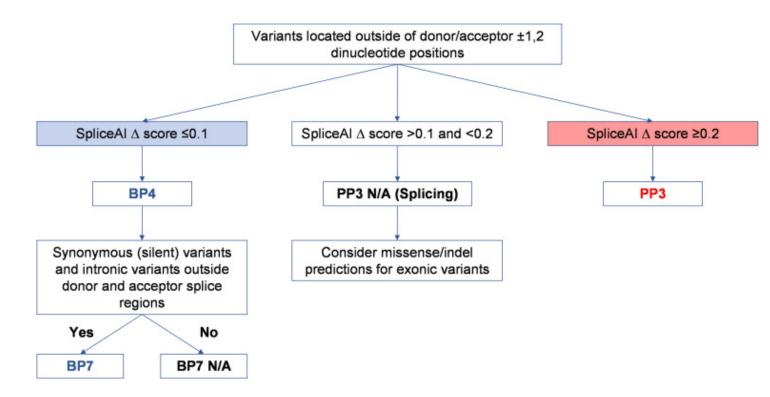
AFR: African/African American, EAS: East Asian, NFE: Non-Finnish European, AMR: Latino, FIN=Finnish

Population Data: Prevalence in Affected Population (PS4)


Criteria assignment & strength:

- Variant is associated with an odds ratio > 5.0 of causing disease with a lower bounded confidence interval > 1.0.
- For many disease-causing variants (which are very rare causing very rare diseases) you don't get enough data to calculate a significant odds ratio. In this case, ACMG allows "proband counting" thresholds determined for a particular gene / disorder:

Table 4 Overview of Case-Level Data Specifications: Point Value Thresholds per Strength Level for Proband Count Thresholds per Variant Curation Expert Panel for PS4								
		Supporting	Moderate	Strong	Very strong			
PS4	Cardiomyopathy	2 probands	6 probands	15 probands	N/A			
	RASopathy	1 proband	3 probands	5 probands	N/A			
	PTEN	1 point	2 points	4 points	16 points			
	CDH1	1 proband	2 probands	4 probands	16 probands			
	Hearing loss (AD)	2 probands	6 probands	15 probands	N/A			


https://pubmed.ncbi.nlm.nih.gov/31479589/

Computational and Predictive Data: Splicing *in silico* predictions (BP7, BP4, PP3)

- Splice AI is an *in-silico* tool that predicts:
 - Loss of canonical donors (DL)
 - Loss of canonical acceptors (AL)
 - Creation / strengthening of cryptic donors (DG)
 - Creation / strengthening of cryptic acceptors (AG)
- ANY variant has a potential impact on splicing, not just variants within the intron.

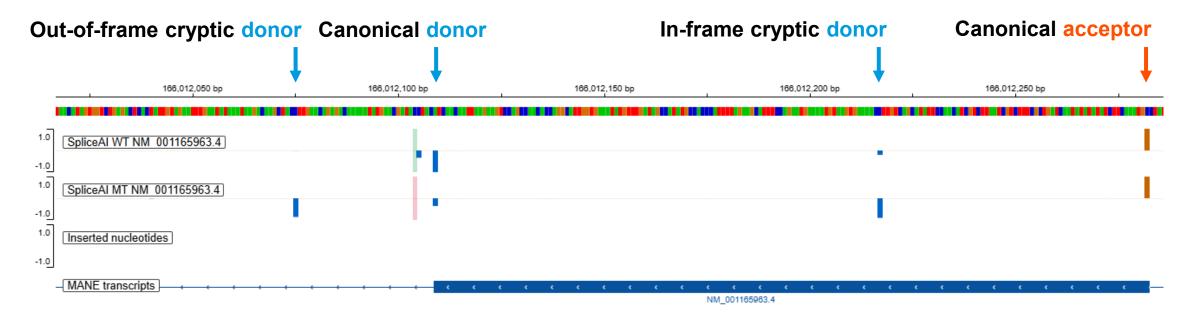
Computational and Predictive Data: Splicing *in silico* predictions (BP7, BP4, PP3)

https://www.cell.com/ajhg/fulltext/S0002-9297(23)00203-3

- Follow this decision tree to determine which criteria to apply
- All criteria applied on the basis of SpliceAl is applied at supporting strength.
- For missense variants that also have a predicted SpliceAl effect, apply whatever gives you the highest PP3 strength.

SpliceAl Example

SCN1A:c.3879+5G>A

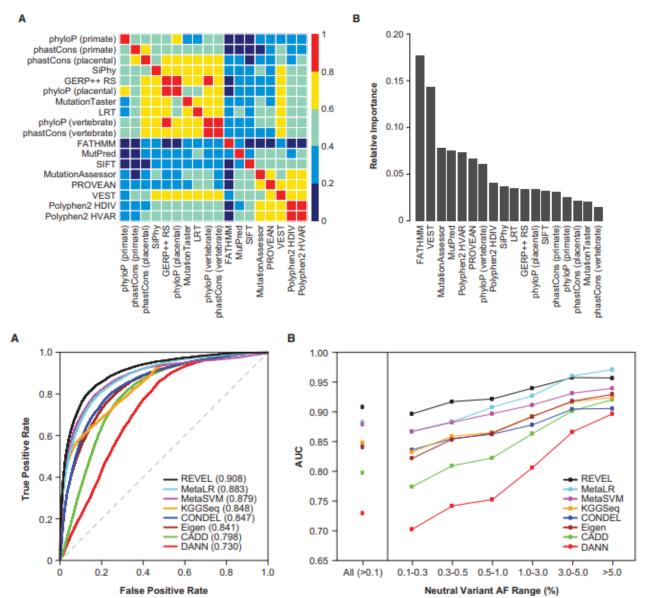

Variant	Gene = MANE Select transcript = non-coding transc	ript Δ type	∆ score ③	position ③
chr2-166012104 C>T	SCN1A (ENSG00000144285.24/ENST00000674923.1/NM_001165963.4)	Acceptor Loss	0.00	178 bp
splice donor 5th base variant	protein coding MANE Select transcript (minus strand)	Donor Loss	0.64	5 bp
UCSC, gnomAD	OMIM, GTEx, gnomAD, ClinGen, Ensembl, Decipher, GeneCards	Acceptor Gain	0.00	
		Donor Gain	0.86	-29 bp

• PP3 is applicable – BUT it is important to consider what is predicted to occur

SpliceAl Example

SCN1A:c.3879+5G>A

Mobi Details: <u>https://mobidetails.iurc.montp.inserm.fr/MD/</u>


- Splice-AI predicts weakening of the canonical donor, but not complete loss
- Additionally, 2 potential cryptic donors are predicted with 2 different consequences

Computational and Predictive Data: Missense *in silico* predictions (BP4, PP3)

Criteria assignment:

- Multiple *in silico* tools predict the variant is benign (BP4) or pathogenic (PP3). If conflicting, neither criteria is assigned.
- The most recent *in silico* tools like REVEL or AlphaMissense combine many forms of analysis into a single score. <u>Thus, a REVEL score, for example, constitutes "multiple" *in* <u>silico tools.</u>
 </u>
- It is recommended that groups pick a tool and only use that tool to prevent selection bias. ClinGen VCEPs primarily use REVEL currently.

Computational and Predictive Data: REVEL

- REVEL is a conglomeration of 18 *in silico* tools that assess how damaging a particular missense variant is
- REVEL gives you a 0 to 1 score of how "damaging" a variant is
- NOT as good at predicting gain of function variants:

REVEL Is Better at Predicting Pathogenicity of Loss-of-Function than Gain-of-Function Variants

Jasmin J. Hopkins, Matthew N. Wakeling, Matthew B. Johnson, Sarah E. Flanagan, Thomas W. Laver 🗙

Computational and Predictive Data: Missense *in silico* predictions (BP4, PP3)

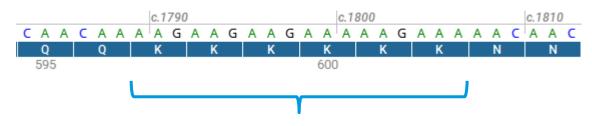
Strength determination:

Benign (BP4)					Pathogenic (PP3)					
Method	Very Strong	Strong	Moderate	Supporting	Supporting	Moderate	Strong	Very Strong		
BayesDel	-	-	≤ -0.36	(-0.36, -0.18]	[0.13, 0.27)	[0.27, 0.50)	≥0.50	-		
CADD	_	≤0.15	(0.15, 17.3]	(17.3, 22.7]	[25.3, 28.1)	≥28.1	-	_		
EA	_	-	≤0.069	(0.069, 0.262]	[0.685, 0.821)	≥0.821	-	_		
FATHMM	_	-	≥4.69	[3.32, 4.69)	(-5.04, -4.14]	≤ -5.04	-	_		
GERP++	_	-	≤ -4.54	(-4.54, 2.70]	-	-	-	_		
MPC	_	-	-	-	[1.360, 1.828)	≥1.828	-	_		
MutPred2	_	≤0.010	(0.010, 0.197]	(0.197, 0.391]	[0.737, 0.829)	[0.829, 0.932)	≥0.932	_		
PhyloP	_	-	≤0.021	(0.021, 1.879]	[7.367, 9.741)	≥9.741	-	-		
PolyPhen2	_	-	≤0.009	(0.009, 0.113]	[0.978, 0.999)	≥0.999	-	-		
PrimateAI	-	-	≤0.362	(0.362, 0.483]	[0.790, 0.867)	≥0.867	-	-		
REVEL	≤0.003	(0.003, 0.016]	(0.016, 0.183]	(0.183, 0.290]	[0.644, 0.773)	[0.773, 0.932)	≥0.932	-		
SIFT	-	-	≥0.327	[0.080, 0.327)	(0, 0.001]	0	-	-		
VEST4	-	-	≤0.302	(0.302, 0.449]	[0.764, 0.861)	[0.861, 0.965)	≥0.965	_		

- Most variant intepretation groups are not currently applying PP3 above moderate strength
- The combination of PP3 and PM1 cannot be > 4 points

A "-" implies that the given tool did not meet the posterior probability (likelihood ratio) threshold. See Table S1 for comprehensive results that include point estimates and one-sided confidence intervals. Intervals follow standard mathematical notation in which "(" and ")" indicate exclusion of the end value and "[" and "]" indicate inclusion of the end value

https://pubmed.ncbi.nlm.nih.gov/36413997/


Computational and Predictive Data: In-frame indels (BP3, PM4)

Criteria assignment:

- PM4 is assigned for in-frame deletions or duplications in **non-repetitive regions**
- BP3 is assigned for in-frame deletions or duplications in **repetitive regions**

Strength:

- PM4 is often applied at supporting for single residue dels/dups. Otherwise, it is applied at moderate.
- BP3 is applied at supporting.

Example of a repetitive region in CHD7

Computational and Predictive Data: Missense variant in a LOF gene (BP1)

Criteria assignment:

- BP1 is assigned when a missense variant is seen in a gene where only truncating (LOF) variants are known to cause disease.
 - Be cognisant of confirmation bias when applying this criteria

Strength:

• BP1 is assigned at supporting.

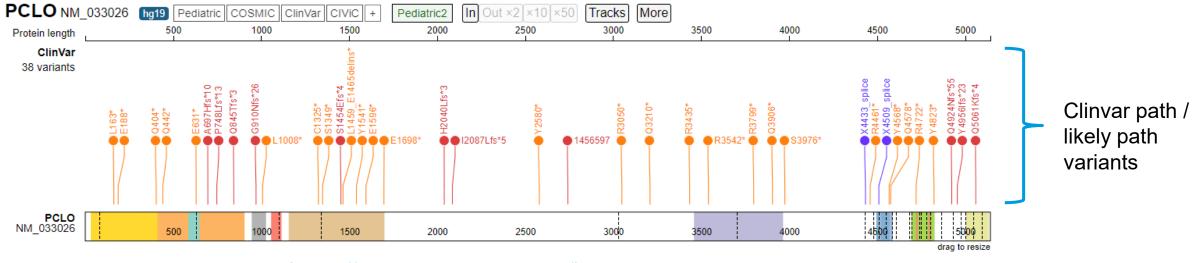


Image made in ProteinPaint (<u>https://proteinpaint.stjude.org/</u>)

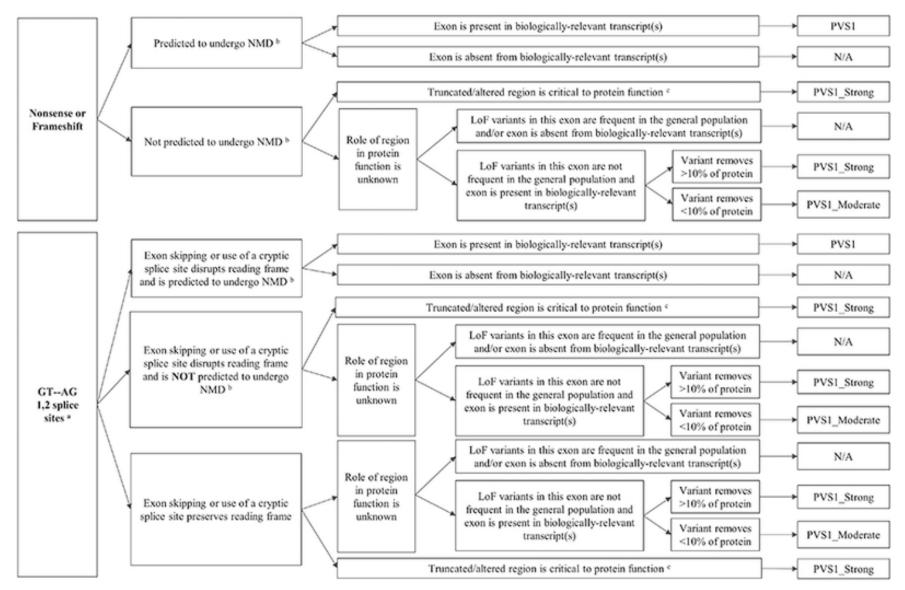
Criteria assignment:

- PM5 is assigned when a novel missense change is seen at the same position as a likely pathogenic or pathogenic variant.
 - <u>LDLR: c.1721G>A (p.Arg574His)</u> Likely pathogenic
 - LDLR: c.1721G>T (p.Arg574Leu)
 Variant under curation → PM5
- PS1 is assigned when a novel nucleotide change leads to the same missense variant previously classified as likely pathogenic or pathogenic.
 - Major caveat: do NOT apply if either variant is predicted to have a different splice effect

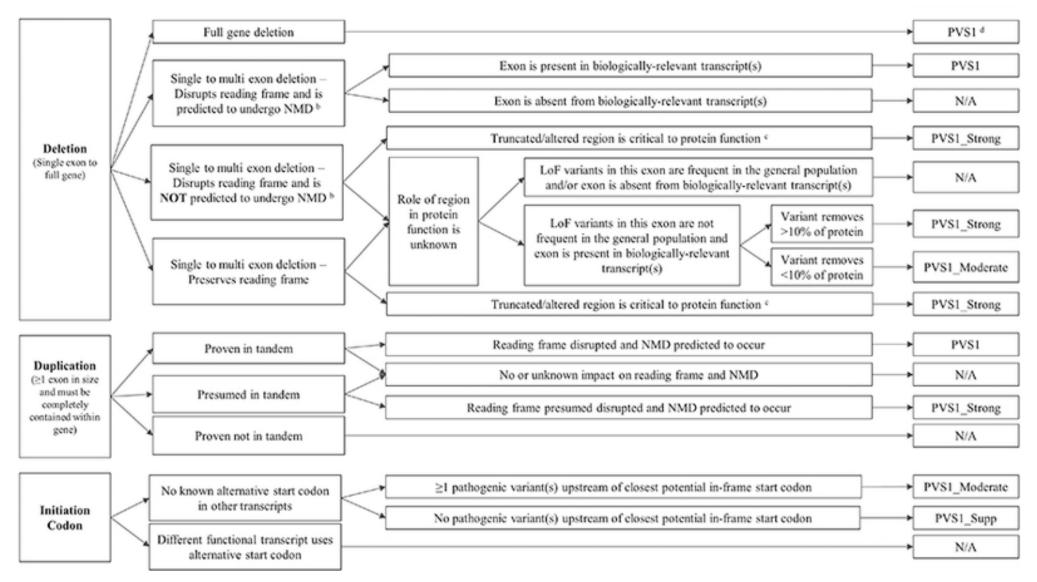
Strength:

• Some ClinGen groups reduce PM5 strength for likely pathogenic variants or increase strength if multiple pathogenic variants are seen at the same residue.

Criteria assignment:


- PVS1: LOF variant in a gene where LOF is an established disease mechanism
- How do you establish LOF as a disease mechanism?
 - Many LOF variants are associated with disease (best evidence)
 - LOF predictors (use caution)

Constraint	Variant co-oc	currence 😧		
Category	Expected SNVs	Observed SNVs	Constraint metrics	
Synonymous	<u>1092.7</u>	1013	Z = <u>1.31</u> o/e = <u>0.93</u> (<u>0.88</u> - <u>0.98</u>)	00 1
Missense	2707.8	2501	Z = <u>1.45</u> o/e = <u>0.92</u> (<u>0.89</u> - <u>0.95</u>)	0 <u> </u>
pLoF	228.7	60	pLI = <u>1</u> o/e = <u>0.26</u> (<u>0.21</u> - 0.33)	0 💻 1


Strength determination:

Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion

Ahmad N. Abou Tayoun 🔀, Tina Pesaran, Marina T. DiStefano, Andrea Oza, Heidi L. Rehm, Leslie G. Biesecker, Steven M. Harrison ... See all authors 🗸

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6185798/

My quick and dirty guide to PVS1 strengths that doesn't involve blurry flowcharts ...

PVS1 – any variant leading to NMD, deletion, or non-expression of the entire gene

PVS1_strong – any variant leading to <u>in-frame</u> removal of either a critical region of the gene (e.g. the active site) or > 10% of the protein

PVS1_moderate – any variant leading to *in-frame* removal of either < 10% of the protein or a region with unknown or non-critical function

• This is essentially the same as **PM4**

Note: PVS1 is not applicable <u>at any strength if LOF</u> is not a disease mechanism, LOF variants are common in the affected exon, or if the affected exon is absent from disease-relevant transcripts

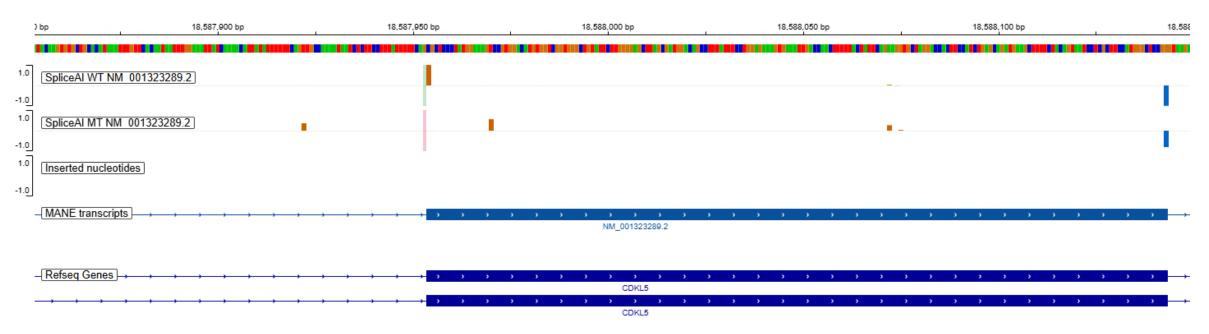
Computational and Predictive Data (PVS1): Selected examples

Example 1: *CDKL5*:c.555-1G>A, found in a proband with developmental encephalopathy

From Franklin:

- Null variant (acceptor site):
 Loss of function is a known mechanism of disease: 399 pathogenic null variants were reported in ClinVar for this gene (chrX:18588096:G>T:HG38, chrX:18588063:AC>A:HG38, chrX:185 88069:C>T:HG38, chrX:18588058:T>TTTTTA:HG38...), across 17 different exons, of which 25 variants in this exon (9) gnomAD observed/expected score 0.226 Coding strand: forward strand
 Exon skipping disrupts reading frame
 Predicted to undergo NMD, not located in last exon or last 50bp of preliminary exon.
 - Coding exon number 8 out of 17 coding exons (9 out of total exons)
- Altered region is critical to protein function Number of pathogenic non-nonsense variants in skipped exon: 27
 Variant removes more than 10% of transcript (6.6% of transcript.)

Computational and Predictive Data (PVS1): Selected examples


Example 1: *CDKL5*:c.555-1G>A, found in a proband with developmental encephalopathy

Curated Gene	es Gene-Disease Validity	 Dosage Sensitivity 	 Clinical Action 	nability 👻 Curated Vari	ants - Statistics	Downloads M	ore 🕶 🕐 🕶
	KL5 w Gene Facts	1 Gene-Disease Validity Classifications	2 Dosage Sensitivity Classifications	0 Clinical Actionability Assertions	78 Variant Pathogenicity Assertions	0 / 0 CPIC / PharmGKE Level Record	2
Curation Su	mmaries Status and Futu	ure Work (2) Genom	neConnect ②	External Genomic Reso	urces ClinVar V	ariants 🕑	
G Gen	e-Disease Valio	lity				Group By Activity	Group By Gene-Disease Pair
Gene	Disease		MOI	Expert Panel	Classificatio	n	Report & Date
CDKL5	CDKL5 disorder MONDO:0100039		XL 🚯	Rett and Angelman-I Disorders GCEP 🗹	ike Definit	ive	1 07/02/2018
Dos	age Sensitivity						
Gene	Disease			Working Group	HI Score &	TS Score	Report & Date
CDKL5	developmental and epil MONDO:0010396	leptic encephalopathy,	2	Dosage Sensitivity W		cient Evidence for nsufficiency)	r 07/12/2012
CDKL5			•	Dosage Sensitivity W		vidence for ensitivity)	107/12/2012

- ClinGen curates dosage sensitivity
- Pay attention to the report date if it's old you may want to double check the current level of evidence

Computational and Predictive Data (PVS1): Selected examples

Example 1: *CDKL5*:c.555-1G>A, found in a proband with developmental encephalopathy

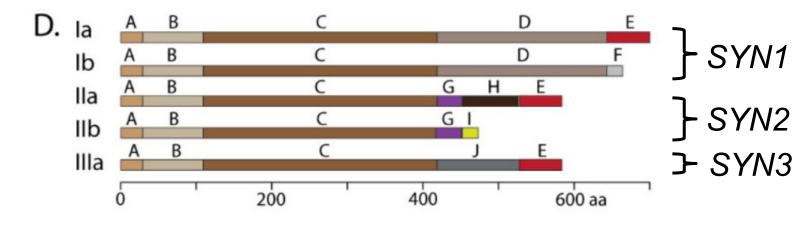
There ARE some cryptic acceptor sites, but all of them are out of frame.

Example 2: SYN1:c.1941_1947dup, p.A650Rfs*36 found in a proband with global delays and seizures

From Franklin:

Pathogenic Strong: ✓PVS1 Null variant in a gene where loss of function is a known mechanism of disease Close Details att Strong Null variant (frameshift indel): Edit \bigcirc Loss of function is a known mechanism of disease: 60 pathogenic null variants were reported in ClinVar for this gene (chrX:47574328:CG>C:HG38, chrX:47574077:AGCTGTGGTTTGGGA TGTGGGGCCG>A:HG38, chrX:47574021:GT>G:HG38, chrX:47574390:G>A:HG38...), across 12 different exons, of which 18 variants in this exon (12) gnomAD observed/expected score 0.251 Coding strand: reverse strand Predicted to undergo NMD, not located in last exon or last 50bp of preliminary exon. Coding exon number 12 out of 13 coding exons (12 out of total exons) Truncated region is critical to protein function \bigcirc Last pathogenic position chrX:47572955:GC>G last pathogenic variants chrX:47572955:GC>G:HG38, chrX:47574077:AGCTGTGGTTT TGGCGTGTGGGGCCG>A:HG38. chrX:47574193:T>TGGGCCTGGGGGGTTTCTGGGGCC:HG38 Number pathogenic variants in non-NMD region: 17 variants (chrX:47574512:TG>T:HG38, chrX:47574390:G>A:HG38, chrX:47574077: AGCTGTGGTTTGGGACGTCCAGCGGGGCCCGGGCCGCCGGGCCGAGGCTGCTGCGGGGGGCCAGTGCGGGGCCCGGGGCCCGG CTGGCTGGCCTGGCGTGTGGGGGCCG>A:HG38, chrX:47574328:CG>C:HG38...)

Example 2: SYN1:c.1941_1947dup, p.A650Rfs*36 found in a proband with global delays and seizures


Nonsense mediated decay (NMD) is not predicted to occur if the premature stop codon is in the last exon or within the last 50 bp of the penultimate exon

PVS1 can be applied either at **strong** or **moderate**

• Strong if the truncated region is essential to disease-relevant protein function; moderate if not.

Example 2: SYN1:c.1941_1947dup, p.A650Rfs*36 found in a proband with global delays and seizures

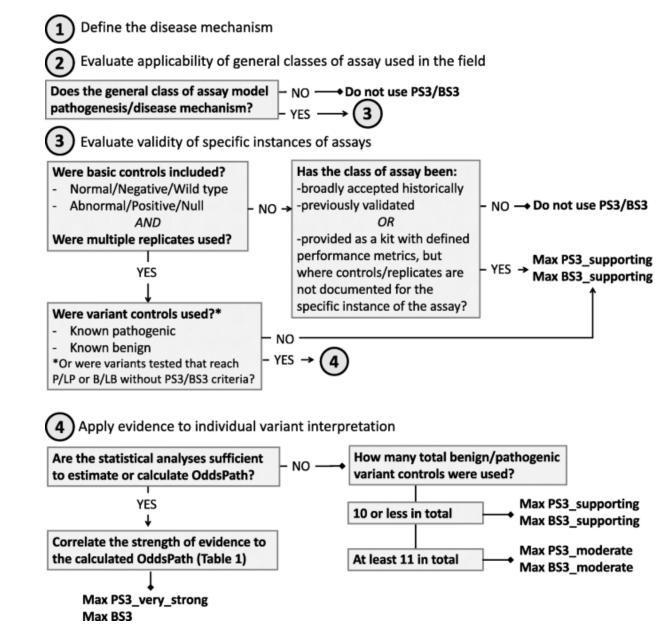
SYN1 D-domain: residues 421-655 SYN1 E-domain: residues 656-705 Frameshift begins at residue 650

- Synapsin 1 encodes 2 of 5 of the major synapsin isoforms
- Synapsins regulate synaptic vesicle (SV) organization and neurotransmission by maintaining SV reserve pools
- The synapsins have 3 conserved Nterminal domains (A-C) whereas the C-terminal domains are more heterogenous (D-J)

Example 2: SYN1:c.1941_1947dup, p.A650Rfs*36 found in a proband with global delays and seizures

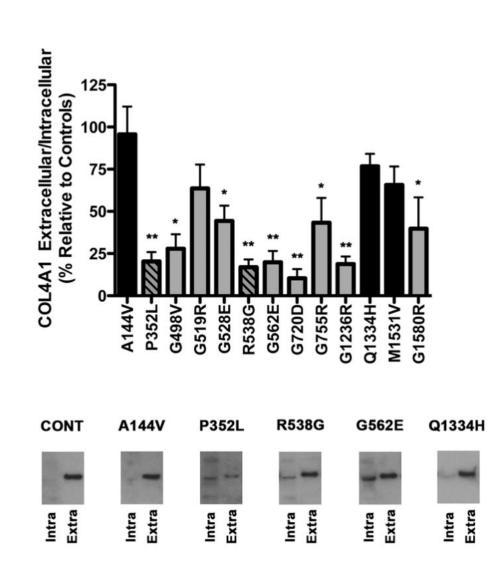
Synapsin E-domain is essential for α-synuclein function

Alexandra Stavsky, Leonardo A. Parra-Rivas, Shani Tal, Jen Riba, Kayalvizhi Madhivanan, Subhojit Roy 😭 , Daniel Gitler 😭


- In this paper, they "scramble" or randomize the E domain residues, essentially replicating the effect of a frameshift
- They found the loss of the E-domain:
 - Abolishes the attenuating effect of a-synuclein on synaptic responses
 - Completely abolishes the interaction between synapsin and a-synuclein
 - Re-introducing the E-domain (and only the E domain) restored the effect of a-synuclein

Functional Data (BS3, PS3)

Criteria assignment:

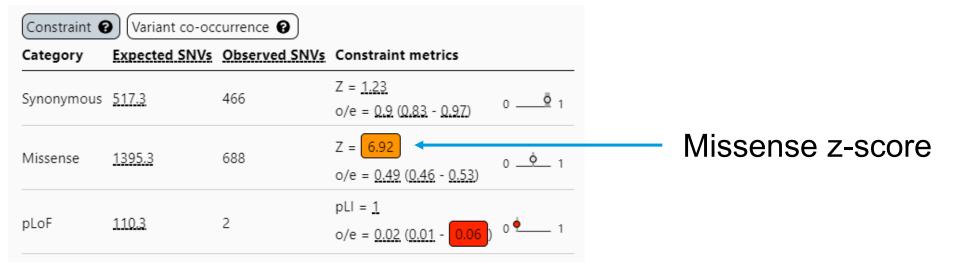

- Very very broadly: well-established functional evidence demonstrates your variant is deleterious (PS3) or has no effect (BS3)
- New guidance (<u>https://pubmed.ncbi.nlm.nih.gov/31892348/</u>) outlines 4 steps for applying PS3 and BS3, including what strengths are allowed:
 - (1) define the disease mechanism
 - (2) evaluate the applicability of general classes of assays used in the field
 - (3) evaluate the validity of specific instances of assays, and
 - (4) apply evidence to individual variant interpretation.

Functional Data (BS3, PS3)

- PS3 is typically applied at supporting or moderate
- Statistical calculation of an odds of pathogenicity allows for PS3 at higher strength, but this is often only applicable in large-scale variant studies.

Functional Data (BS3, PS3): Example

Α


В

A patient presents with sudden-onset hemiplegia. An MRI reveals a recent cerebral hemorrhage and evidence of several old microbleeds.

WGS reveals the variant *COL4A1*:c.2159G>A, G720D

- 1. Define the disease mechanism:
- The disease mechanism is thought to result from a lack of stable collagen being exported, leading to decreased integrity of the extracellular matrix.
- 2. Evaluate the applicability of general assay classes used in the field.
- WB is very commonly used and applicable to the mechanism.
- 3. Evaluate the validity of specific instances of assays
- Done in triplicate with WT control
- 4. Apply evidence to individual variant interpretation.
- Not enough known pathogenic variants to reach PS3_moderate. Apply PS3_supporting.

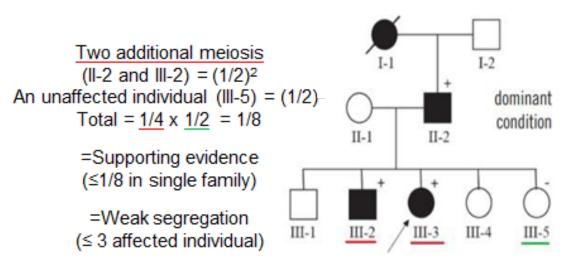
Functional Data: Gene intolerant to missense: (PP2)

Criteria application: A gnomAD missense z-score of 3.09 corresponds to a p-value of 0.001 for the null hypothesis: the observed missense variants = expected missense variants. Genes with z-score > 3.09 can have PP2 assigned to missense variants.

Strength: PP2 is applied at supporting. Some groups / clinical labs do not apply this criteria.

Functional Data: Functional Region: (PM1)

The variant lies in a mutational hotspot or well-studied functional domain without benign variation. Application & strength determination of this criteria is gene-specific; for example:


ClinGen Familial Hyp	percholesterolemia Expert Panel Specifications to the ACMG/AMP Variant Classification Guidelines Version 1.2 🥙	~		
Rule Set:	Rules For LDLR 🔗			
Disease(s)	hypercholesterolemia, familial, 1			
Gene(s)	LDLR			
Genetype	nuclear			
Criteria Code	Strength Specification			
PM1 - Very Strong	NA			
PM1 - Strong	NA			
PM1 - Moderate	Missense variant located in exon 4, or a missense change in one of 60 highly conserved cysteine residues (listed in Supp. Table 4). Caveat: variant must also meet PM2.			
PM1 - Supporting	NA			
ClinGen Familial Hypercholesterolemia Expert Panel Specifications to the ACMG/AMP Variant Classification Guidelines Version 1.2				
Showing 1 to 4 of 4 entries (filtered from 107 total entries)				

https://cspec.genome.network/cspec/ui/svi/summary

Segregation Data (BS4, PP1)

٠

PP1 Strength	# Affected Individuals	Meiosis Method (1/2)m
Weak (Supporting)	AD: ≥3 AR: ≥2	≤1/8 in 1 family ≤1/4 in >1 family
Moderate	AD: ≥6 AR: ≥3, ≥2 families	≤1/16 in 1 family ≤1/8 in >1 family
Strong	AD: ≥10 AR: ≥5, ≥2 families	≤1/32 in 1 family ≤1/16 in >1 family

Criteria application:

- PP1 can be applied based on the total number of probands within a family OR by the number of informative meioses
 - "Informative meioses" allows for the counting of unaffected non-carriers
- BS4 is applied when the variant does not segregate with disease within a family
 - Disease must be fully penetrant to apply BS4

De Novo Data (PM6, PS2)

Assignment: Variant is either *de novo* with confirmed parentage (sequencing has determined parents are biological parents; PS2) or assumed parentage (only point testing was done on the parents; PM6).

Strength determination: see tables.

Notes:

- "Assumed de novo" does NOT mean *de novo* is assumed because of the severity of the condition. It means we assume the individuals presenting as mother and father are the proband's biological parents.
- For X-linked disorders that primarily affect males, you can apply *de novo* criteria if the variant is inherited from a mother in whom the variant was *de novo*.

Table 1. Points awarded per de novo occurrence

	Points per Proband	
Phenotypic consistency	Confirmed de novo	Assumed de novo
Phenotype highly specific for gene	2	1
Phenotype consistent with gene but not highly specific	1	0.5
Phenotype consistent with gene but not highly specific and high genetic heterogeneity*	0.5	0.25
Phenotype not consistent with gene	0	0

*Maximum allowable value of 1 may contribute to overall score

Table 2. Recommendation for determining the appropriate ACMG/AMP evidence strength level for de novo occurrence(s)

Supporting (PS2_Supporting or PM6_Supporting)	Moderate (PS2_Moderate or PM6)	Strong (PS2 or PM6_Strong)	Very Strong (PS2_VeryStrong or PM6_VeryStrong)
0.5	1	2	4

Allelic Data (BP2, PM3)

Assignment:

- BP2 *in cis* with a recessive pathogenic variant OR *in trans* with a dominant pathogenic variant. BP2 is used sparingly.
- PM3 see table

Strength determination: see table.

Notes:

- Individual in whom the variants are present must be affected
- PM2 should be applicable for PM3 to be applied.
- Pay attention to the max point allowances for the homozygous occurrences and the *in trans* variant being of uncertain significance

Table 1. Points awarded per in trans proband

	Points per Proband	
Classification/Zygosity of other variant ¹	Confirmed in trans	Phase unknown
Pathogenic or Likely pathogenic variant	1.0	0.5 (P) 0.25 (LP)
Homozygous occurrence (max point 1.0)	0.5	N/A
Uncertain significance variant (max point 0.5)	0.25	0.0

¹All variants should be sufficiently rare (meet PM2 specification); P - Pathogenic; LP - Likely pathogenic

Table 2. Recommendation for determining the appropriate evidence strength level for PM3

PM3_Supporting	PM3	PM3_Strong	PM3_VeryStrong
0.5	1.0	2.0	4.0

https://clinicalgenome.org/site/assets/files/3717/svi proposal for pm3 criterion - version 1.pdf

Other Data (BP5)

Assignment: Variant is found in a proband with an alternative cause of disease.

Strength determination: supporting.

Notes:

• Used VERY sparingly, as probands can have multiple variants that contribute to disease, the variant could be in a gene with incomplete penetrance, etc.

Phenotypic Data (PP4)

The patient's phenotype is **highly specific** for a gene:

 This means the phenotype points to a single (or a very limited number) gene. A variant in a gene that causes seizures in a proband with seizures cannot have PP4 applied because hundreds of genes cause seizures.

For example:

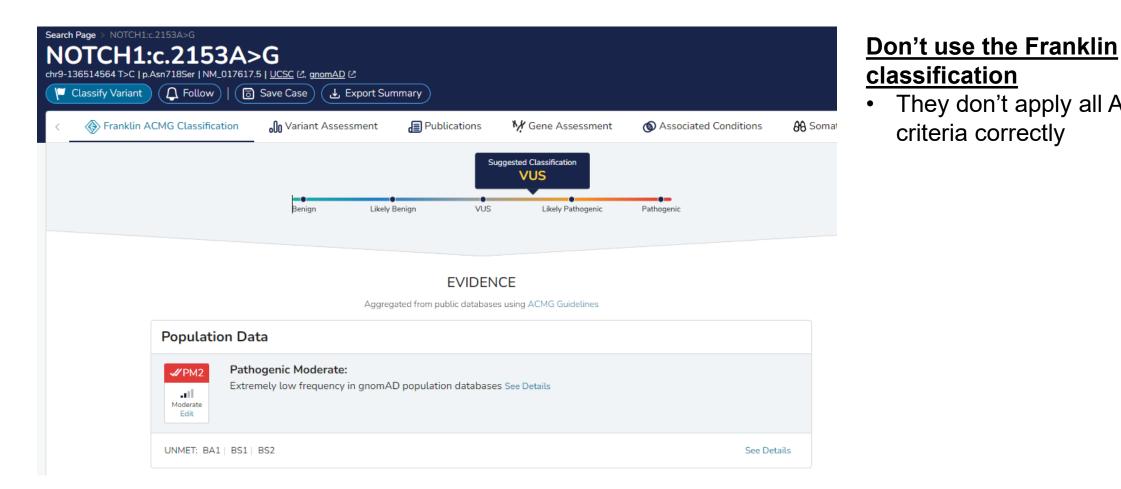
ClinGen PAH Expert Panel Specifications to the ACMG/AMP Variant Interpretation Guidelines Version 1 🔗			
Rule Set:	Rules For PAH 🔗		
Disease(s)	phenylketonuria		
Gene(s)	PAH		
Genetype	nuclear		
Criteria Code	Strength Specification		
PP4 - Very Strong	NA		
PP4 - Strong	NA		
PP4 - Moderate	Plasma Phe >120 µmol/L and exclusion of a defect of BH4 cofactor metabolism.		
PP4 - Supporting	Phenotype specific for disease with single genetic etiology.		
ClinGen PAH Expert Panel Specifications to the ACMG/AMP Variant Interpretation Guidelines Version 1			
Showing 1 to 4 of 4 entries (filtered from 107 total entries)			

Phenotypic Data (PP4)

Important note:

 For some criteria, the patient's phenotype is considered as part of the strength determination (for example, in PS2). In these cases, PP4 is not applied as a separate criteria.

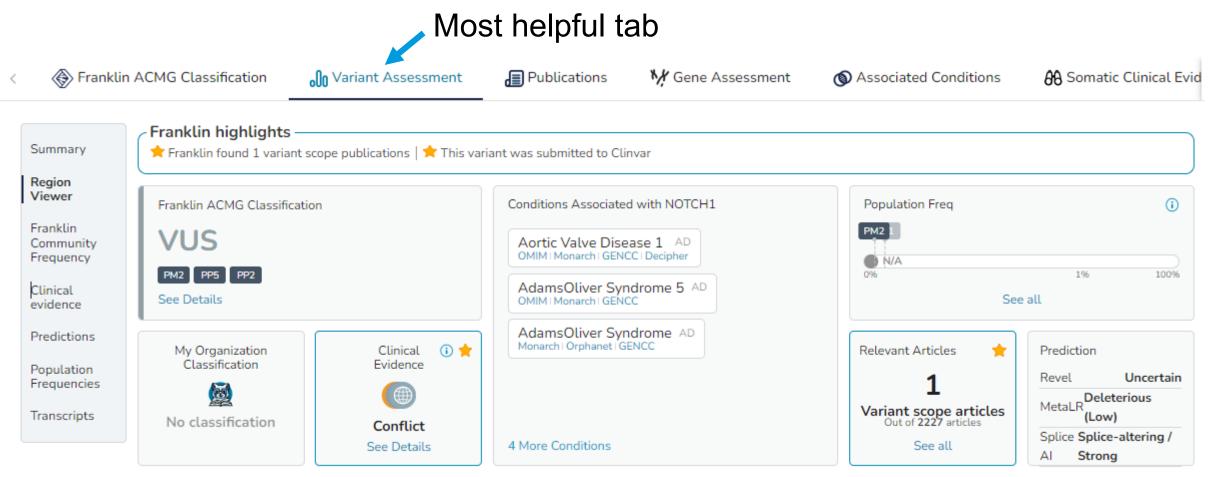
Table 1. Points awarded per de novo occurrence


	Points per Proband	
Phenotypic consistency	Confirmed de novo	Assumed de novo
Phenotype highly specific for gene	2	1
Phenotype consistent with gene but not highly specific	1	0.5
Phenotype consistent with gene but not highly specific and high genetic heterogeneity*	0.5	0.25
Phenotype not consistent with gene	0	0

*Maximum allowable value of 1 may contribute to overall score

Table 2. Recommendation for determining the appropriate ACMG/AMP evidence strength level for de novo occurrence(s)

Supporting (PS2_Supporting or PM6_Supporting)	Moderate (PS2_Moderate or PM6)	Strong (PS2 or PM6_Strong)	Very Strong (PS2_VeryStrong or PM6_VeryStrong)
0.5	1	2	4


The Future of Genomic Medicine			
NOTCH1:c.21534	4>G	REFERENCE TYPE Q hg38 • Germline • Q	
Add your case details	What is the variant zygosity? Homozygote Heterozygote Unknow	vn	
1/7 questions	Skip question	Search	

©2025 Mayo Foundation for Medical Education and Research | slide-53

They don't apply all ACMG

criteria correctly

See all Predictions

Clinical evidence	
2 evidences Submissions: • VUS(2) • LP(1) Franklin Community (0)	CLINVAR 🗹
Clinvar (2)	
Clinvar Clinical Significance: Likely pathogenic Adams-oliver Syndrome 5 Review Status: ★☆☆☆ RCV001330761 Clinvar ☑	~
Last evaluated: Feb 24, 2023 2 submitters	
UniProt (0)	
Mitomap (0)	
See all evidences	

• They mine and link to ClinVar

• They give multiple in silico scores, including REVEL and Splice-AI

• They pull frequency data from gnomAD

©2025 Mayo Foundation for Medical Education and Research | slide-57

Example

In this portion of the class, you will:

• See an example of a full variant classification! YAY!

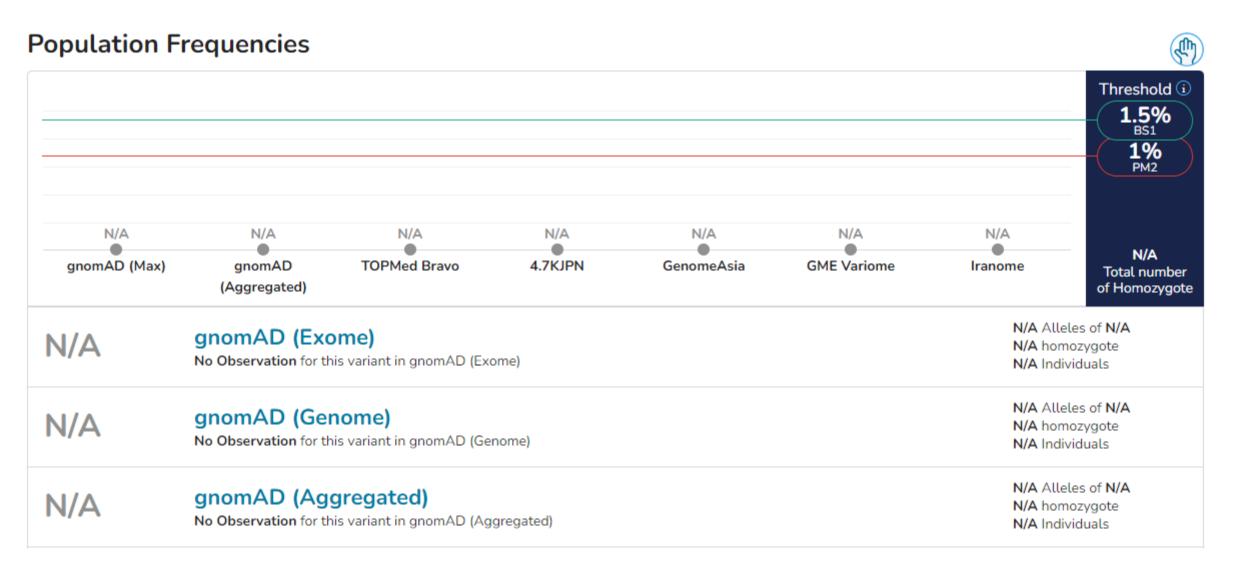
Classification Example

Patient phenotype:

 Abnormality of male external genitalia, high palate, retrognathia, low-set ears, patent ductus arteriosus, hypoglycemia, abnormal pattern of respiration, ascending tubular aorta aneurysm, abnormality of the external nose, abnormal digit morphology, fetal choroid plexus cysts, short fetal femur length, heart murmur, abnormal atrioventricular valve physiology

Variant identified via trio genome:

- *CCDC22:*c.1634A>G, Lys545Arg
- Inheritance: maternal (X-linked gene).
 Follow-up sequencing found the variant was not inherited from the mother's parents.

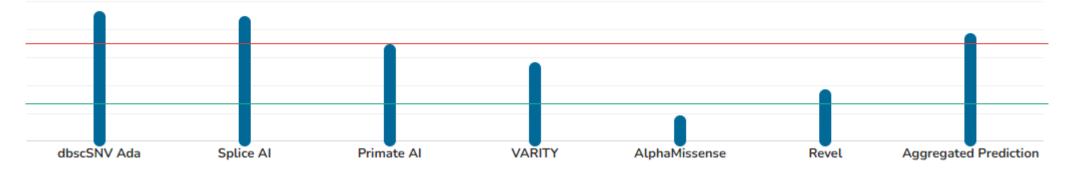

Criteria being considered	Strength being applied	Evidence	Points
Variant classification:			Sum:

ACMG Criteria 2015

	< Benign > <		Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-framework repeat w/out know with on BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein variant pathogenic hanging	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path, missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	>	
De novo data				De nov yout paternity caternity confirm of vi6	De novo (paterning) maternity conf PS2	
Allelic data		Observer in the with a dome BP2 Observer in a pathogen van at BP2		For reactive disorder and in tran- patheres at PM3		
Other database		Reputable w/out shared day aign BP6	Reputation free = pathor P5			
Other data		Found in cree oth an alternation use BP5	Patient's phenotype or FH highly specific for gene PP4			

https://pubmed.ncbi.nlm.nih.gov/25741868/

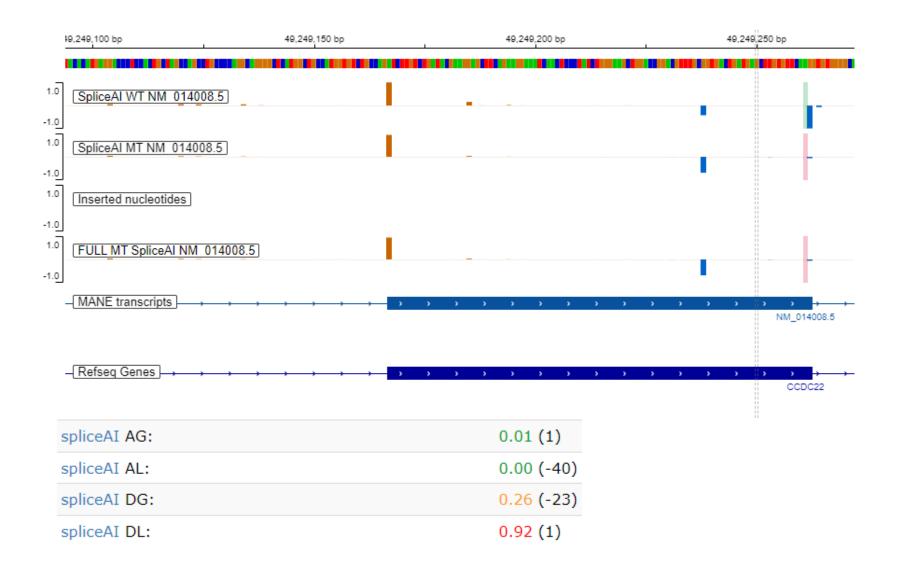
PM2

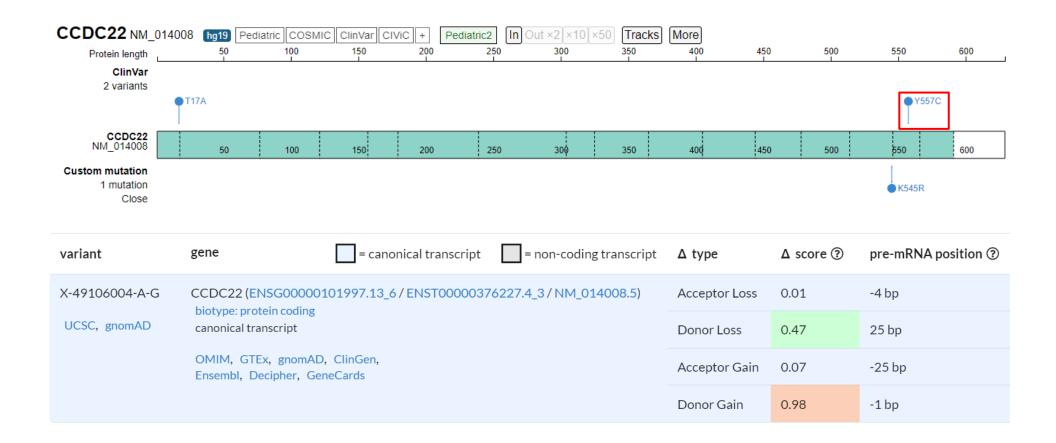


ACMG Criteria 2015

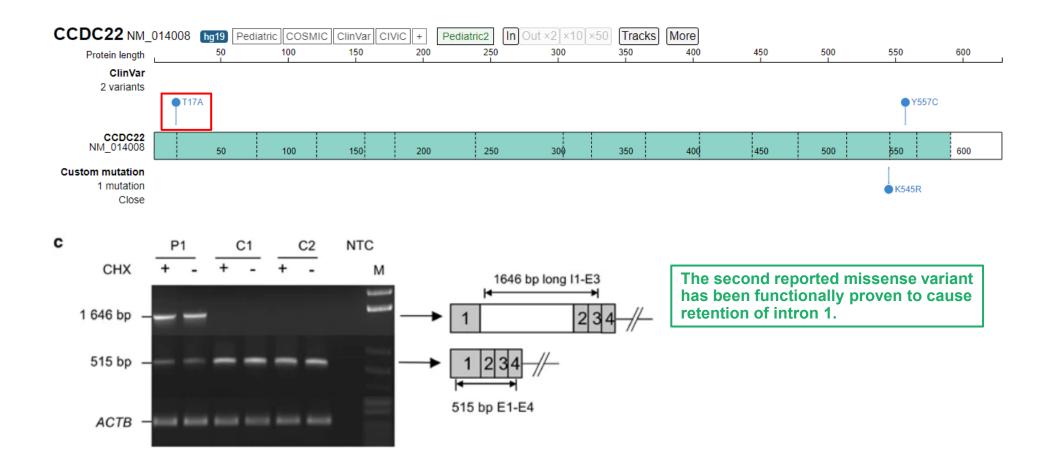
	< Benign > <		Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is this for dison OR observer ontrols incondiseass energice BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-framework negeat w/out know by ction BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein variant pathogenic hanging	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path, missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	>	
De novo data				De not put paternity confirm 2 16	De novo (paterrind maternity conf PS2	
Allelic data		Observe in the with a dome BP2 Observe h a pathoge van it BP2		For receivered disorder and in transpathered pathered at PM3		
Other database		Reputable w/out shared dz nign BP6	Reputation free = pathor P5			
Other data		Found in the oth an alternation ase BP5	Patient's phenotype or FH highly specific for gene PP4			

https://pubmed.ncbi.nlm.nih.gov/25741868/


*Prediction scores were normalized to allow integrated graph view


Functional Coding			
Revel	Uncertain (0.38)		
AlphaMissense	Benign (Moderate) (0.085)		
Eve	(N/A)		
Varity	Deleterious (low) (0.42)		
MUT Assesor	Med (2.04)		
SIFT	Benign (Supporting) (0.128)		

spliceAI AG:	0.01 (1)
spliceAI AL:	0.00 (-40)
spliceAI DG:	0.26 (-23)
spliceAI DL:	0.92 (1)


PP3

PP3

PP3

ACMG Criteria 2015

	< Benign > <		Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is his for dison OR observe ontrols incon- diseast ener rce BS2			Absent in population databases PM2	Prevalence in ally ally increase control of the second sec	
Computational and predictive data		Multiple tines of compressional evence system of the system /gs Missele for the system only different system of the system predicted splice impact BP7 In-frames of a repeat w/out kny system BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel research change at an end of the sidue where the sidue where the sidue change as the seen before PM5 Protein variant P	Same mine cid charter estable pather int PS1	Provided in the second
Functional data	Well-ex-blists t function show no dele effect BS3		Missen in proceeding low re- missen and rest and path comme P2	Mutation hot of or we function of function of the without with	Well-problished functions show to excluse effective	
Segregation data	Nonseregati		Cosegn ation with disease and a affected member	Increased segregation data	>	
De novo data	•••		••	De nov put paternity caternity confirm 7 16	De novo (pateroind maternity conf PS2	
Allelic data		Observe to the BP2 Observe the BP2 Observe the BP2		For receive disord and ed in transpather with PM3		
Other database		Reputable w/out shared dz nign BP6	Reputation free = pathor P5			
Other data		Found in the 5th an alternationse BP5	Patient's phenotype or FH highly specific for gene PP4			

https://pubmed.ncbi.nlm.nih.gov/25741868/

Table 1. Points awarded per de novo occurrence

	Points per Proband	
Phenotypic consistency	Confirmed de novo	Assumed de novo
Phenotype highly specific for gene	2	1
Phenotype consistent with gene but not highly specific	1	0.5
Phenotype consistent with gene but not highly specific and high genetic heterogeneity*	0.5	0.25
Phenotype not consistent with gene	0	0

*Maximum allowable value of 1 may contribute to overall score

<u>Table 2. Recommendation for determining the appropriate ACMG/AMP evidence strength</u> level for de novo occurrence(s)

Supporting (PS2_Supporting or PM6_Supporting)	Moderate (PS2_Moderate or PM6)	Strong (PS2 or PM6_Strong)	Very Strong (PS2_VeryStrong or PM6_VeryStrong)
0.5	1	2	4

Conditions with X-linked inheritance: if the variant occurs *de novo* in an unaffected carrier mother, and family history is consistent - i.e., she has no affected brothers/other male relatives apart from her affected son(s) – *de novo* criteria may be applied despite the fact that she is unaffected.

PS2

Ritscher-Schinzel syndrome 2

INHERITANCE

- X-linked recessive

GROWTH

Other - Growth delay, postnatal

HEAD & NECK

Head

- Large head circumference

Face

- Broad forehead
- Short philtrum

Eyes

- Upslanting palpebral fissures
- Hypertelorism

Mouth

- Protruding tongue
- Abnormal dentition (in some patients)

Neck

- Broad neck

CARDIOVASCULAR

Heart

Ventricular septal defect

Atrial septal defect

Vascular

- Patent ductus arteriosus

GENITOURINARY

External Genitalia (Male)
- Cryptorchidism

SKELETAL

Skull - Large anterior fontanelles

Spine

- Scoliosis

Hands

Distal digital anomalies

- Syndactyly
- Camptodactyly
- Clinodactyly
- Hypoplastic distal phalanges

Feet

- Overriding toes
- Broad halluces

SKIN, NAILS, & HAIR

Hair

- Low posterior hairline
- Aplasia cutis (in some patients)

MUSCLE, SOFT TISSUES - Hypotonia

NEUROLOGIC

Central Nervous System
- Delayed psychomotor development

- Poor speech
- Dandy-Walker malformation
- Cerebellar hypoplasia

MISCELLANEOUS

- Variable features
- Two unrelated families have been reported (last curated November 2015)

Classification Example

Patient phenotype:

 Abnormality of male external genitalia, high palate, retrognathia, low-set ears, patent ductus arteriosus, hypoglycemia, abnormal pattern of respiration, ascending tubular aorta aneurysm, abnormality of the external nose, abnormal digit morphology, fetal choroid plexus cysts, short fetal femur length, heart murmur, abnormal atrioventricular valve physiology

Variant identified via trio genome:

- *CCDC22:*c.1634A>G, Lys545Arg
- Inheritance: maternal (X-linked gene).
 Follow-up sequencing found the variant was not inherited from the mother's parents.

Criteria being considered	Strength being applied	Evidence	Points
Variant classifica	Sum:		