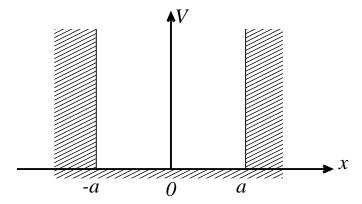
$\mathbf{Q}\mathbf{1}$: Consider the quantum mechanics of a particle of mass m confined in a one-dimensional potential well of width 2a and with infinitely-high walls—as shown in the figure:



- a) Copy the figure into your answer book and sketch the wavefunctions $\psi(x)$ corresponding to the three lowest energy states.
- b) Write down the Schrödinger equation for the system, state the appropriate boundary conditions, and find all possible energy eigenvalues and eigenfunctions.

Now we add a delta-function perturbation $V(x) = \lambda \delta(x)$ to the center of the potential well.

- c) To lowest order in λ find the shift in each allowed energy E_n , and state the condition for this change to be nonzero.
- d) Perturbation theory will be useful when λ is small but small compared to what combination of other parameters in the problem?
- e) Assume now that λ is no longer small, so we cannot use perturbation theory. Write down the conditions that $\psi(x)$ must obey at x=0, and hence derive a transcendental equation whose solutions will give the energy levels.
- f) Show that when λ is small your transcendental equation recovers your results from part (c).