X-ray Photoelectron Spectroscopy (XPS)

RICK HAASCH, PH.D. UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ILLINOIS Materials Research Laboratory GRAINGER COLLEGE OF ENGINEERING

Surfaces and Interfaces

"God made the bulk; the surface was invented by the devil."

— Wolfgang Pauli

Particle Surface Interactions

Primary beam Secondary beam (spectrometers, detectors) (source) lons lons Electrons **Electrons** Photons **Photons**

What is the Surface?

Particle Surface Interactions

Photoelectron Spectroscopy

X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate the chemical composition of surfaces.

X-ray¹ Photoelectron spectroscopy, based on the photoelectric effect,^{2,3} was developed in the mid-1960's as a practical technique by Kai Siegbahn and his research group at the University of Uppsala, Sweden.⁴

- 2. H. Hertz, "Über einen Einfluss des ultravioletten Lichtes auf die electrische Entladung," Ann. Physik **31**,983 (1887). The IEEE Heinrich Hertz Medal was established by the Board of Directors in 1987 "for outstanding achievements in Hertzian (radio) waves."
- 3. A. Einstein, "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt," Ann. Physik **17**,132 (1905). 1921 Nobel Prize in Physics "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect."
- . 4. K. Siegbahn, Et. Al., Nova Acta Regiae Soc. Sci., Ser. IV, Vol. 20 (1967). 1981 Nobel Prize in Physics "for his contribution to the development of high resolution electron spectroscopy."

1.

X-ray Photoelectron Spectroscopy Small Area Detection

Calculate: **BE** = hv - **KE** - Φ_{spec}

BE – binding energy depends on Z, i.e. characteristic for the element

Calculate: **BE** = hv - **KE** - Φ_{spec}

BE – binding energy depends on Z, i.e. characteristic for the element

Photoelectron Lines

Auger Electron Lines

XPS can probe all of the orbitals in only the light elements. e.g. BE C 1s = 285 eV, Mg 1s =1304 eV, Au 1s ≈ 81000 eV

Surface Sensitivity: Electron Spectroscopy

Inelastic Mean-Free Path: The mean distance an electron can travel between inelastic scattering events.

Inelastic mean-free paths (calculated) based on TPP-2M*

Surface Sensitivity: Electron Spectroscopy

95% of the signal comes from within 5 nm of the surface or less!

Ratio: 100 Mt. Hood Prominence: 7707 feet Douglas Fir Height: ~77 feet

AR AND A

Ratio: 10000 Fingerprint Residue: ~50000 nm XPS Sensitivity: ~5 nm

Surface Sensitivity: Electron Spectroscopy

X-ray Photoelectron Spectroscopy

Advantage

Disadvantage

Extremely surface sensitive!

Extremely surface sensitive!

https://phys.org/news/2019-05-substrate-defects-key-growth-d.html

Ion Sputtering

• Ions striking a surface interact with atoms in a series collisions.

- recoiled target atoms in turn collide with atom at rest generating a collision cascade.
- The initial ion energy and momentum are distributed among the target recoil atoms.
- When E_i > 1 keV, the cascade is "linear," *i.e.* approximated by a series of binary collisions in a stationary matrix.

P. Sigmund, "Sputtering by ion bombardment: theoretical concepts," in *Sputtering by particle bombardment I*, edited by R. Behrish, Springer-Verlag, 1981. Image credit: https://ulvac-phi.com/

Sputtering animations and review articles (psu.edu): https://garrison.chem.psu.edu/research/classic-sputtering-animations-and-review-papers/

X-ray Photoelectron Spectrometer

Image credit: https://www.kratos.com/

Gas-cluster Ion Source (GCIS)

<u>כ</u>

Pure Element

Fermi Level

Binding Energy

Look for changes here by observing electron binding energies

Electron-Nucleus Separation

Elemental Shifts

<u>ן</u>

26

Elemental Shifts

Core Level Binding Energies

Elemental Shifts – Higher Energy X-ray Sources

Jonathan D. P. Counsell; Alex G. Shard; David J. Cant; Christopher J. Blomfield; Parnia Navabpour; Xiaoling Zhang; *Surface Science Spectra* **28**, 024005 (2021). DOI: 10.1116/6.0001389 Copyright © 2021 Author(s)

Elemental Shifts – Higher Energy X-ray Sources

I. Hoflijk, A. Vanleenhove, I. Vaesen, C. Zborowski, K. Artyushkova, T. Conard; High energy x-ray photoelectron spectroscopy spectra of Si_3N_4 measured by Cr K α . *Surface Science Spectra* 1 June 2022; 29 (1): 014013. <u>https://doi.org/10.1116/6.0001524</u>

Elemental Shifts – Higher Energy X-ray Sources

Anja Vanleenhove, Fiona Crystal Mascarenhas, Ilse Hoflijk, Inge Vaesen, Charlotte Zborowski, Thierry Conard; HAXPES on SiO₂ with Ga Kα photons. *Surface Science Spectra* 1 June 2022; 29 (1): 014012. <u>https://doi.org/10.1116/6.0001523</u>

Elemental Shifts

First-Row Transition Metals

		Binding Energy (eV)					
Element	2p _{3/2}	Зр	Δ				
Sc	399	29	370				
Ti	454	33	421				
V	512	37	475				
Cr	574	43	531				
Mn	639	48	591				
Fe	707	53	654				
Со	778	60	718				
Ni	853	67	786				
Cu	933	75	858				
Zn	1022	89	933				

Elemental Shifts: Transition Metal Nitrides

21 Sc Scendium 44.95591 22 Titanium 47.88 23 V Vanadium 50.9415 24 Cr Chronium 51.9961

First-Row Transition Metal Nitrides: ScN, TiN, VN, and CrN

XPS Core-level binding energies increase

R. T. Haasch, T.-Y. Lee, D. Gall, C.-S. Shin, J. E. Greene, I. Petrov, Surf. Sci. Spectra, 7, 169 (2000), Surf. Sci. Spectra, 7, 193 (2000), Surf. Sci. Spectra, 7, 221 (2000), Surf. Sci. Spectra, 7, 250 (2000).

Spin-orbit Splitting

R. T. Haasch, "X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES)," in *Practical Materials Characterization*, M. Sardela, ed., (Springer Science + Business Media, New York, 2014). ISBN 978-1-4614-9280-1. doi: 10.1007/978-1-4614-9281-8_3. Atomic Orbitals and Quantum Numbers. (2019, June 5). https://chem.libretexts.org/@go/page/122444

Spin-orbit Splitting

Electron spin: $s = \pm \frac{1}{2}$

Orbital angular momentum: *I* = 0, 1, 2, 3 ... for *s*, *p*, *d*, *f* orbitals

j = |/ ± s|

Momentum quantum number: m_j , -j to j (2j + 1 states)

R. T. Haasch, "X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES)," in *Practical Materials Characterization*, M. Sardela, ed., (Springer Science + Business Media, New York, 2014). ISBN 978-1-4614-9280-1. doi: 10.1007/978-1-4614-9281-8_3. Atomic Orbitals and Quantum Numbers. (2019, June 5). https://chem.libretexts.org/@go/page/122444

Graphene Transfer

A sustainable approach to large area transfer of graphene

M. C. Wang, W. Moestopo, S. Takekuma, S. Farabi, R. T. Haasch, S.-W. Nam, "Sustainable approach for large area transfer of graphene and recycle of the catalyst substrate," J. Mater. Chem. C, 5, 11226 (2017). doi:10.1039/c7tc02487h.

Chemical Shifts

Electronegativity Effects

Chemical Shifts

XPS of polymethylmethacrylate

2

0 1s

R. T. Haasch, "X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES)," in Practical Materials Characterization, M. Sardela, ed., (Springer Science + Business Media, New York, 2014). ISBN 978-1-4614-9280-1. doi: 10.1007/978-1-4614-9281-8 3. © 2025 University of Illinois Board of Trustees. All rights reserved.

Superhydrophobic Materials

Superhydrophobic Surfaces from Naturally Derived Hydrophobic Materials

S. M. R. Razavi, J. Oh, S. Sett, L. Feng, X. Yan, M. J. Hoque, A. Liu, R. T. Haasch, M. Masoomi, R. Bagheri, N. Miljkovic, "Superhydrophobic Surfaces Made From Naturally Derived Hydrophobic Materials," ACS Sustainable Chem. Eng., 5(12), 11362 (2017). doi:10.1021/acssuschemeng.7b02424.

Solid Electrolyte Interphase (SEI)

Parallel pathways for the transport and intercalation of Li ions into an active particle and the growth of the SEI layer through degradation reactions of solvent molecules with Li ions.

Cathode (positive electrode)- LiNi_{0.8}Co_{0.2}O₂

D. P. Abraham, J. Liu, C. H. Chen, Y. E. Hyung, M. Stoll, N. Elsen, S. MacLaren, R. Twesten, R. Haasch, E. Sammann I. Petrov, K. Amine, G. Henriksen, "Diagnosis of power fade mechanisms in high-power lithium-ion cells," J. Power Sources, 119-121, 511-516 (2003).

R. T. Haasch, D. P. Abraham, "LiNi_{0.8}Co_{0.2}O₂-based high-power lithium-ion battery positive electrodes analyzed by X-ray photoelectron spectroscopy," Surface Science Spectra, 23, 112-172 (2016).

Cathode (positive electrode)- LiNi_{0.8}Co_{0.2}O₂

D. P. Abraham, J. Liu, C. H. Chen, Y. E. Hyung, M. Stoll, N. Elsen, S. MacLaren, R. Twesten, R. Haasch, E. Sammann I. Petrov, K. Amine, G. Henriksen, "Diagnosis of power fade mechanisms in high-power lithium-ion cells," J. Power Sources, 119-121, 511-516 (2003).

R. T. Haasch, D. P. Abraham, "LiNi_{0.8}Co_{0.2}O₂-based high-power lithium-ion battery positive electrodes analyzed by X-ray photoelectron spectroscopy," Surface Science Spectra, 23, 112-172 (2016).

Anode (negative electrode)- Si Based Materials

Si powders and electrodes for high-energy lithium-ion cells

Dissolvable Metals

Dissolvable Metals for Transient Electronics

Lan Yin, Huanyu Cheng, Shimin Mao, Richard Haasch, Yuhao Liu, Xu Xie, Suk-Won Hwang, Harshvardhan Jain, Seung-Kyun Kang, Yewang Su, Rui Li, Yonggang Huang, and John A. Rogers*

L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu, X. Xie, S.-W. Hwang, H. Jain, S.-K. Kang, Y. Su, R. Li, Y. Huang, J. A. Rogers, "Dissolvable Metals for Transient Electronics," *Adv. Funct. Mater.*, **24**, 645 (2014).

Transition Metal Nitrides

N 1s spectra of First-Row Transition Metal Nitrides: ScN, TiN, VN, and CrN

R. T. Haasch, T.-Y. Lee, D. Gall, C.-S. Shin, J. E. Greene, I. Petrov, Surf. Sci. Spectra, 7, 169 (2000), Surf. Sci. Spectra, 7, 193 (2000), Surf. Sci. Spectra, 7, 250 (2000).

Quantitative Surface Analysis: XPS

detector count

Assuming a Homogeneous sample:

A_i = detector count rate

 $A_{i} = (electrons/volume)(volume)$ $A_{i} = (N_{i}\sigma_{i}(\gamma)JT(E_{i}))(a\lambda_{i}(E_{i})cos\theta)$

Sample Dependent Terms where: N = atoms/cm³ $\sigma(\gamma)$ = photoelectric (scattering) cross-section, cm² $\lambda(E_i)$ = inelastic electron mean-free path, cm

Instrument Dependent Terms

J = X-ray flux, photon/cm²-sec T(E_i) = analyzer transmission function a = analysis area, cm² θ = photoelectron emission angle

Quantitative Surface Analysis: XPS

By assuming the concentration to be a relative ratio of atoms, we can neglect the terms that depend only on the instrument:

 $N_i = A_i / \sigma_i T(E_i) \lambda_i(E_i)$

It is difficult to accurately determine λ_i so it is usually neglected. Modern acquisition and analysis software can account for the transmission function.

 $N_i = A_i / S_i$

 $C_{i} = A_{i}/S_{i} / \Sigma A_{i,j}/S_{i,j}$

The values of S are determined theoretically or empirically with standards.

XPS is considered to be a *semi*-quantitative technique.

Quantitative Surface Analysis: XPS

XPS Relative Elemental Sensitivities

NCM Family of Oxide Materials - Raw Powder

Lithium-bearing Oxides for Rechargeable Li-ion Batteries: NCM_{xyz} (LiNi_{x/10}Co_{y/10}Mn_{z/10}O₂, with x+y+z=10)

R. T. Haasch, S. E. Trask, D. P. Abraham, "Lithium-bearing oxides for rechargeable Li-ion batteries," Surf. Sci. Spectra, 26, 014002 (2019). doi:10.1116/1.5080232.

NCM Family of Oxide Materials - Raw Powder

Lithium-bearing Oxides for Rechargeable Li-ion Batteries: NCM_{xyz} (LiNi_{x/10}Co_{y/10}Mn_{z/10}O₂, with x+y+z=10)

R. T. Haasch, S. E. Trask, D. P. Abraham, "Lithium-bearing oxides for rechargeable Li-ion batteries," Surf. Sci. Spectra, 26, 014002 (2019). doi:10.1116/1.5080232.

Transition Metal Nitrides

XPS Analysis			ScN	TiN	VN	CrN
	Metal 2p _{3/2}	Major peak	400.4	455.1	513.2	574.4
Binding energy		Satellite ^a		457.9	515.5	575.5
(eV)	Metal 2p1/2	Major peak	404.9	461.0	520.7	584.0
		Satellite ^a		463.8	523.0	585.1
	N 1s		396.1	397.3	397.0	396.7
Composition	As Deposited		1.13	1.00	1.02	0.73 ^b
(N/metal)	After ion bon	nbardment	0.99	0.73	0.46	0.55 ^b
	Bulk value fr	om RBS	1.11±0.03	1.02±0.02	1.06±0.02	1.04±0.02

First-Row Transition Metal Nitrides: ScN, TiN, VN, and CrN

a. The satellite is due to a transition into a relaxed final state

b. The composition determination of the CrN layers by peak fitting is less reliable because the commonly used Shirley method for background subtraction does not accurately describe the experimental data.

Nitrogen/Metal peak ratio decreases after sputtering

R. T. Haasch, T.-Y. Lee, D. Gall, C.-S. Shin, J. E. Greene, I. Petrov, Surf. Sci. Spectra, 7, 169 (2000), Surf. Sci. Spectra, 7, 193 (2000), Surf. Sci. Spectra, 7, 221 (2000), Surf. Sci. Spectra, 7, 250 (2000).

Layer thickness calculation: Two-Layer Model

Assuming only inelastic scattering

Beer-Lambert relationship: $I = I_0 exp(-d/\lambda cos\theta)$

R. T. Haasch, "X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES)," in *Practical Materials Characterization*, M. Sardela, ed., (Springer Science + Business Media, New York, 2014). ISBN 978-1-4614-9280-1. doi: 10.1007/978-1-4614-9281-8_3. © 2025 University of Illinois Board of Trustees. All rights reserved.

Graphene Transfer

Layer-by-Layer Transfer of Multiple, Large Area Sheets of Graphene Grown in Multilayer Stacks on a Single SiC Wafer

S. Unarunotai, J. Koepke, C.-L. Tsai, F. Du, C. Chialvo, Y. Murata, R. Haasch, I. Petrov, N. Mason, M. Shim, J. Lyding, J. A. Rogers, ACS Nano, 4(10), 5591-5598, (2010).

Angle-resolved XPS

Angle-resolved XPS - SiO_2/Si

R. T. Haasch, "X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES)," in *Practical Materials Characterization*, M. Sardela, ed., (Springer Science + Business Media, New York, 2014). ISBN 978-1-4614-9280-1. doi: 10.1007/978-1-4614-9281-8_3. © 2025 University of Illinois Board of Trustees. All rights reserved.

Angle-resolved XPS - SiO_2/Si

Layer thickness calculation: Angle-resolved XPS

R. T. Haasch, "X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES)," in *Practical Materials Characterization*, M. Sardela, ed., (Springer Science + Business Media, New York, 2014). ISBN 978-1-4614-9280-1. doi: 10.1007/978-1-4614-9281-8_3. © 2025 University of Illinois Board of Trustees. All rights reserved.

XPS Imaging: Porous Silicon Pixel Array

Y. Harada, X. Li, P. W. Bohn, R. G. Nuzzo, JACS, 123, 8709-8717 (2001).

XPS Depth Profiling : LIB Solid-state Electrolyte

Technique Comparison: Resolution vs. Detection Limit

Technique Comparison: Typical Analysis Depth

Image credit: https://www.eag.com/

"The best that most of us can hope to achieve in physics is simply to misunderstand at a deeper level."

— Wolfgang Pauli

Thank You to Our AMC 2025 Sponsors

ILLINOIS Materials Research Laboratory grainger college of engineering