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Atomistic Structure of Matter

Atom: derived from the ancient Greek 
word atomos, which means 
“uncuttable” (4th Century BC).

Modern view of the structure of an 
atom was derived by Rutherford 
(1913) and Bohr (1913).

Experiments on atomic nature of 
materials (packing of atoms in 
crystals) was deduced by Bragg and 
Bragg (1913).

Adapted from D.J. Larson et al., Local Electrode APT, book 2013
https://commons.wikimedia.org/wiki/File:Sodium-chloride-3D-ionic.png
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Mass Spectrometry

https://serc.carleton.edu/download/images/9094/massspecschematic.jpg

Quadrupole Magnetic Sector
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Time-of-Flight (ToF) Mass Spectrometry

𝐾𝐾𝐾𝐾 =  𝑒𝑒𝑉𝑉0 =
1
2
𝑚𝑚𝑣𝑣2

https://www.scienceskool.co.uk/tof-mass-spec.html
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Field Electron Emission Microscope (FEEM)

Erwin Wilhelm Müller - 1935

Adapted from D.J. Larson et al., Local Electrode APT, book 2013

• 109 V/m needed to strip an electron from an atom
• Sharp point produces enhanced electric field
• 10,000 V with 1 um tip radius => 109 V/m
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Field Ion Microscope (FIM)

10-3 Pa He imaging gas, Tip cooled to 20-80K, Very sharp tip: 80 nm or less

W(011)

Kanwar Bahadur and Erwin W. Müller - 1955

Adapted from D.J. Larson et al., Local Electrode APT, book 2013



© 2025 University of Illinois Board of Trustees. All rights reserved. 

8

Atom Probe Field Ion Microscope – Voltage Mode

E. W. Müller, J. A. Panitz and S. B. McLane, 
The atom-probe field ion microscope. Rev. 
Sci. Instrum. 39 (1968) 83–86.

Field Evaporation

Adapted from: CAMECA, 2019
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Atom Probe projection system

Adapted from: CAMECA, 2019
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Atom Probe Ion Emission

Adapted from: CAMECA, 2019

Probability
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Field Evaporation of Ions – Mass Spectrometry

Adapted from: R.M. Ulfig (CAMECA, 2020)
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Local Electrode Atom Probe
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Position Sensitive Detector

Microchannel Plate (MCP) Delay Line Anode (DLA)

Adapted from D.J. Larson et al., Local Electrode APT, book 2013
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LEAP 5000 XS / CAMECA (AMETEK) 
Counting Electronics Tip Cooling

Analysis Chamber Buffer Chamber Load Lock
Magnetic (Lin-Rot) 

Manipulator
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CAMECA LEAP Parts

Sample Puck

Puck with Sample Coupon Sample or Local Electrode 
Storage Carousel

Sample 
Puck

Coupon

Local 
Electrode

https://www.atomprobe.com/keyaptlinks/options-accessories-consumables

https://www.atomprobe.com/keyaptlinks/options-accessories-consumables
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Local Electrode Atom Probe
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Sample Preparation

• Requirements for APT 
samples
– Specimens must be sharp 

with a radius of curvature 
of ~100 nm or less

– Feature of interest within 
50 to 150 nm of specimen 
apex
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Electropolishing

• Electrochemical process 
where material is removed 
leaving a sharp tip

• Polishing done using 
meniscus of electrolyte

• Electrolyte chosen based 
upon material being 
polished



Application - Atom Probe Tomography 
Sample Preparation
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Protective Layer
Deposition

Wedge 
Cutting, Cleaning & Lift-

out

Wedge 
Mounting

Wedge 
Release 

Probe 
Sharpening & Polishing 345
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Repeating

90°

Schematic of APT-tip FIB Preparation
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Analysis of Dielectric Layer of Quantum Dot Devices

Al
Al2O3

SiO2

Sputtered 
Al (100 nm)

ALD Al2O3 
(10-15 nm)

SiO2 (1000 nm)

Si substrate

APT analysis of semiconductor 
quantum dot devices to investigate the 
effects of impurities and roughness at 
the interfaces around the Al2O3 
dielectric layer.

Goal: To determine the relationship 
between transport properties of the 
quantum dot and interface 
imperfections.

Courtesy:  J. Huang and N. Mason, University of Illinois
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Analysis of Dielectric Layer of Quantum Dot Devices

APT Reconstruction: Al in blue, O in green, Si in gray, Ga in yellow.
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Analysis of Dielectric Layer of Quantum Dot Devices

Al

Al2O3

SiO2

Al in blue, O in green, Si in gray



© 2025 University of Illinois Board of Trustees. All rights reserved. 

• FIB of needle specimen
• Approximately 80M hits in laser pulse mode
• Standard analysis using IVAS:

• 1-D concentration profile
• Cluster Analysis
• Nearest Neighbor Analysis

• Local Concentration
• Cluster composition analysis for two separate regions

• Cluster Size Analysis
• Cluster Composition Analysis
• Iso-surfaces

• Si/Ni
• Frequency Distribution Analysis

SEM Images

APT Analysis of Proton Irradiated Mixed Phase 308L Stainless Steel

Samples courtesy:  B. Heuser, University of Illinois
FIB preparation: H. Zhou, University of Illinois

APT measurement: W. Swiech, University of Illinois

23
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Mixed phase:  δ-ferrite and γ-austenite 2:10% Si:Ni iso-surface

Region 1

Region 2

δ-ferrite

γ-austenite

Grain boundary

1-D composition profiles

δ-ferrite

γ-austenite

G-phase
precipitates
in δ-ferrite

Si-Ni clustering
in γ-austenite

Cluster Analysis
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APT Analysis of Proton Irradiated Mixed Phase 308L Stainless Steel

Courtesy:  B. Heuser, University of Illinois 24
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Evolution of Dilute Al-Sc Alloys During Annealing

Atom Al Sc Ga O C Pt H

Composition (at.%) 98.17 1.37 0.1 0.01 0.01 0.04 0.32

(b)

(a)

As-grown Annealed
for 1 hour
at 150 °C

STEM analysisAPT analysis

Courtesy:  S. Jana, S. Kim, R.S. Averback, 
P. Bellon, University of Illinois
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Grain Boundary Depletion: Annealing at 180 °C

1D concentration 
profile along 

cylinder
Sc-rich
precipitate

Sc-depleted GB

Sc in solution
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Grain Boundary Depletion: Annealing at 300 °C

Sc-depleted GB

Sc-rich 
nanoclusters

1D concentration 
profile along 

cylinder
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Li-ion battery cathode

J.W. Lin, D. Xie, H. Jeong, A.J. Littlefield, T. Spila, B. Zahiri, and P.V. Braun. J. Mater. Chem. A, 2025,13, 10910-10919.
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Li-ion battery cathode
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Li-ion battery cathode

Highly mobile Li ions are susceptible 
to migration under intense applied 
field in APT analyses, leading to 

artifacts in results

Kim et al. J. Mater. Chem. A, 2022, 10, 4926–4935

In situ delithiation for electrode materials
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Li-ion battery cathode

Drastic scaling relations between Li excess and laser 
heating energy were found for samples with Li 

conducting channels aligned with applied E-field

Suppressed correlation was discovered for samples 
with an alternate orientation, which validates the 

contributions of the anisotropic transport properties
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Secondary Ion Mass Spectrometry

SIMS is an analytical technique based on the 
measurement of the mass of ions ejected from a solid 
surface after the surface has been bombarded with 
high energy (1-25 keV) primary ions.

Primary Ions Secondary Ions

32
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Block Diagram of SIMS Technique

33
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Time of Flight Mass Spectrometer

Physical Electronics
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LMIG: Single Ion

LMIS
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Lens &
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35
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LMIG: Un-bunched Beam
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Ion Beam Sputtering

Sputtered species include:
• Monoatomic and polyatomic particles of sample material (positive, negative or neutral)
• Resputtered primary species (positive, negative or neutral)
• Electrons
• Photons

37

Graphic courtesy of 
EAG Laboratories
http://www.eag.com
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PHI nanoTOF II Parallel Imaging MS/MS

Diagram 
courtesy of:
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Static and Dynamic SIMS

Dynamic SIMSStatic SIMS

•Material removal
•Elemental analysis
•Depth profiling

•Ultra surface analysis
•Elemental or molecular analysis
•Analysis complete before 
significant fraction of molecules 
destroyed

Courtesy Gregory L. Fisher, Physical Electronics 39
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Trace Analysis

GaAs Wafer
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No sputtering to remove organics on surface.
Large C3H3 peak does not have a tail to lower 
mass which would obscure C2HN and K. 40
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InAs/GaAs Quantum Dots

In+ Linescans 
of Quantum Dots
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TOF-SIMS Imaging of Patterned Sample
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Courtesy Josh Ritchey, Audrey Bowen, Ralph Nuzzo and Jeffrey Moore, University of Illinois
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Comparison of Static and Dynamic SIMS

TECHNIQUE STATIC DYNAMIC
FLUX < 1013 ions/cm2

(per experiment)
~1017 ions/cm2

(minimum dose density) 

INFORMATION Elemental + Molecular Elemental

SENSITIVITY 1 ppm < 1 ppm
(ppb for some elements)

TYPE OF ANALYSIS Surface Mass Spectrum
2D Surface Ion Image

Depth Profile
Mass Spectrum
3D Image Depth Profile

SAMPLING DEPTH 2 monolayers 10 monolayers

SPATIAL 
RESOLUTION

0.1 – 1.0 µm 0.1 -1.0 µm

SAMPLE DAMAGE Minimal Destructive in analyzed 
area – up to 500 µm per 
area 43
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GaAs/AlGaAs Depth Profile

Al

Ga

Analysis beam:   15kV Ga+

Sputter Beam:     300V O2
+ 

  with oxygen flood 

44
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Quantitative Analysis: SIMS

In SIMS, the yield of secondary ions is 
strongly influenced by the electronic 
state of the material being analyzed.

Is
m = secondary ion current of species m

Ip = primary particle flux
ym = sputter yield
α+ = ionization probability to positive ions
θm = factional concentration of m in the layer
η = transmission of the analysis system

ηθα mmp
m
s yII +=

45
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Total Ion Sputtering Yield

+

First principles prediction of ion sputter yields 
is not possible with this technique.

Courtesy of 
Prof. Rockett

Sputter yield (ym):  ratio of number of atoms sputtered 
to number of impinging ions, typically 5-15

Ion sputter yield (ym • α+): ratio of ionized atoms sputtered 
to number of impinging ions, 10-6 to 10-2

Ion sputter yield may be influenced by:
•Matrix effects
•Surface coverage of reactive elements
•Background pressure in the sample environment
•Orientation of crystallographic axes with respect to the sample surface
•Angle of emission of detected secondary ions

46

ηθα mmp
m
s yII +=
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Determination of RSF Using Ion Implants

i
i

m

I
IRSF ρ=

CdIId
CtIRSF

bi

m

−
=

∑
φ

Level
Profile:

Gaussian
Profile:

RSF = Relative Sensitivity Factor
Im, Ii = ion intensity (counts/sec)
ρ = atom density (atoms/cm3)
φ = implant fluence (atoms/cm2)

ηθα mmp
m
s yII +=

C = # measurement cycles
t = analysis time (s/cycle)
d = crater depth (cm)
Ib = background ion counts

Where:

47

Graphic courtesy of 
EAG Laboratories
http://www.eag.com
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Effect of Primary Beam on Secondary Ion Yields

Oxygen bombardment
When sputtering with an oxygen beam, the concentration of oxygen increases in the surface layer and metal-oxygen bonds are present in 
an oxygen-rich zone.  When the bonds break during the bombardment, secondary ion emission process, oxygen becomes negatively 
charged because of its high electron affinity and the metal is left with the positive charge.  Elements in yellow analyzed with oxygen 
bombardment, positive secondary ions for best sensitivity.

Cesium bombardment
When sputtering with a cesium beam, cesium is implanted into the sample surface which reduces the work function allowing more 
secondary electrons to be excited over the surface potential barrier.  With the increased availability of electrons, there is more negative ion 
formation.  Elements in green analyzed with cesium, negative secondary ions for best sensitivity.

Graphic courtesy of 
EAG Laboratories
http://www.eag.com

48
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Positive and Negative Secondary Ions
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Depth Profile Application with Hydrogen

Detects hydrogen    Large dynamic range 50
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B Depth Profile in Si(001)

SIMS depth profiles through a B 
modulation-doped Si(001):B film 
grown by GS-MBE from Si2H6 
and B2H6 at Ts=600 °C. The 
incident Si2H6 flux was JSi2H6 = 
2.2x1016 cm-2 s-1 while the B flux 
JB2H6 was varied from 8.4x1013 to 
1.2x1016 cm-2 s-1. The deposition 
time for each layer was constant 
at 1 h.

G. Glass, H. Kim, P. Desjardins, 
N. Taylor, T. Spila, Q. Lu, and J. E. Greene. 
Phys. Rev. B, 61,7628 (2000).

51
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Electrolessly etched silicon nanowire arrays

Dope NW tips by SODs

J.S Sadhu, H. Tian, T. Spila, J. Kim, B. Azeredo, P. Ferreira, and S. Sinha. Nanotechnology 25, 375701 (2014).
52
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Transition-Metal Accumulation on Anodes in Li-ion Batteries
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Summary

Atom Probe SIMS

Information
 Surface Mass Spectrum
 2D Surface Ion Image
 Elemental Depth Profiling
 3D Image Depth Profiling

Elements Detectable
 H and above

Sensitivity
 ppb - atomic %

Analysis Diameter/Sampling Depth
 ~1 mm - several mm/0.5 - 1nm

Spatial Resolution
0.1 – 0.3 nm in depth
0.3 – 0.5 nm laterally

Field of View
100 – 200 nm laterally

Time-of-flight mass analysis
Mass range from 1 – 600 amu

Compositional analysis
Near 100% ionization of emitted atoms
Up to 80% of all atoms analyzed
Sensitivity ~ ppm
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