

Atom Probe Tomography and Secondary Ion Mass Spectrometry

Timothy P. Spila, Ph.D. Sr. Research Scientist

Materials Research Laboratory *MRL.Illinois.edu* University of Illinois at Urbana-Champaign

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

GRAINGER ENGINEERING

Atomistic Structure of Matter

Atom: derived from the ancient Greek word *atomos*, which means "uncuttable" (4th Century BC).

Modern view of the structure of an atom was derived by Rutherford (1913) and Bohr (1913).

Experiments on atomic nature of materials (packing of atoms in crystals) was deduced by Bragg and Bragg (1913).

Adapted from D.J. Larson et al., Local Electrode APT, book 2013

https://commons.wikimedia.org/wiki/File:Sodium-chloride-3D-ionic.png

ANALYTICAL RESOLUTION VS. DETECTION LIMIT

Analytical Spot Size 5E22 100 at% XRR SEN etry Atom EDS 10 at% 1E22 Probe 1E21 1 at% TGA/DTA/DS 1E20 0.1 at% **ToF-SIMS** DHEN RBS 100 ppm 1E19 SEM Detection Range Atoms/cm³ ATTAS COLUMN LOS O STAT SOM DIA DE DET 10 ppm 1E18 Physical limit for TXRF 1E17 1ppm 1E16 100 ppb n sampling depin Elemental information 1E15 10 ppb Janoing depth **Elemental and** Dynamic SIMS 1E14 1ppb Imaging nation 1E13 100 ppt Information Bulk ation GDMS Techniques TS RESERVED. 1E12 10 ppt 10 µm 0.1 nm 1 nm 10 nm 100 nm 1µm 100 µm 1 cm 1 mm TEM/STEM EBSD **I**maging Techniques Nanoindentation RTX © 1995-2019 EUROFINS EAG MATERIALS SCIENCE, LLC (M-006916

Mass Spectrometry

Time-of-Flight (ToF) Mass Spectrometry

$$KE = eV_0 = \frac{1}{2}mv^2$$

https://www.scienceskool.co.uk/tof-mass-spec.html

Field Electron Emission Microscope (FEEM)

Erwin Wilhelm Müller - 1935

- 10⁹ V/m needed to strip an electron from an atom
- Sharp point produces enhanced electric field
- 10,000 V with 1 um tip radius => 10⁹ V/m

Adapted from D.J. Larson et al., Local Electrode APT, book 2013

Field Ion Microscope (FIM)

Kanwar Bahadur and Erwin W. Müller - 1955

10⁻³ Pa He imaging gas, Tip cooled to 20-80K, Very sharp tip: 80 nm or less

Adapted from D.J. Larson et al., Local Electrode APT, book 2013

Atom Probe Field Ion Microscope – Voltage Mode

^{© 2025} University of Illinois Board of Trustees. All rights reserved.

Sci. Instrum. 39 (1968) 83-86.

Atom Probe projection system

Adapted from: CAMECA, 2019

Atom Probe Ion Emission

] [

Field Evaporation of Ions – Mass Spectrometry

Description of Atom-Probe Operation

Adapted from: R.M. Ulfig (CAMECA, 2020)

Local Electrode Atom Probe

5

Position Sensitive Detector

Adapted from D.J. Larson et al., Local Electrode APT, book 2013

LEAP 5000 XS / CAMECA (AMETEK)

Counting Electronics

Tip Cooling

CAMECA LEAP Parts

Puck with Sample Coupon

Sample Puck

Sample or Local Electrode Storage Carousel

https://www.atomprobe.com/keyaptlinks/options-accessories-consumables

Local Electrode Atom Probe

Model Parameters

- ◆50 nm tip radius
- 10° shank angle
- ◆50 micron wire
- 1 mm long

 Specimen-to-local-electrode distance is that required to permit a 70° geometric FOV

Sample Preparation

- Requirements for APT samples
 - Specimens must be sharp with a radius of curvature of ~100 nm or less
 - Feature of interest within
 50 to 150 nm of specimen
 apex

Electropolishing

- Electrochemical process where material is removed leaving a sharp tip
- Polishing done using meniscus of electrolyte
- Electrolyte chosen based upon material being polished

Schematic of APT-tip FIB Preparation

Analysis of Dielectric Layer of Quantum Dot Devices

APT analysis of semiconductor quantum dot devices to investigate the effects of impurities and roughness at the interfaces around the Al_2O_3 dielectric layer.

Goal: To determine the relationship between transport properties of the quantum dot and interface imperfections.

Analysis of Dielectric Layer of Quantum Dot Devices

APT Reconstruction: Al in blue, O in green, Si in gray, Ga in yellow.

Analysis of Dielectric Layer of Quantum Dot Devices

APT Analysis of Proton Irradiated Mixed Phase 308L Stainless Steel

- FIB of needle specimen
- Approximately 80M hits in laser pulse mode
- Standard analysis using IVAS:
 - 1-D concentration profile
 - Cluster Analysis
 - Nearest Neighbor Analysis
 - Local Concentration
 - Cluster composition analysis for two separate regions
 - Cluster Size Analysis
 - Cluster Composition Analysis
 - Iso-surfaces
 - Si/Ni
 - Frequency Distribution Analysis

Samples courtesy: B. Heuser, University of Illinois FIB preparation: H. Zhou, University of Illinois APT measurement: W. Swiech, University of Illinois

SEM Images

APT Analysis of Proton Irradiated Mixed Phase 308L Stainless Steel

Courtesy: B. Heuser, University of Illinois

© 2025 University of Illinois Board of Trustees. All rights reserved.

Evolution of Dilute Al-Sc Alloys During Annealing

APT analysis

STEM analysis

© 2025 University of Illinois Board of Trustees. All rights reserved.

Grain Boundary Depletion: Annealing at 180 °C

^{© 2025} University of Illinois Board of Trustees. All rights reserved.

Grain Boundary Depletion: Annealing at 300 °C

^{© 2025} University of Illinois Board of Trustees. All rights reserved.

J.W. Lin, D. Xie, H. Jeong, A.J. Littlefield, T. Spila, B. Zahiri, and P.V. Braun. J. Mater. Chem. A, 2025,13, 10910-10919.

In situ delithiation for electrode materials

Highly mobile Li ions are susceptible to migration under intense applied field in APT analyses, leading to artifacts in results

Kim et al. J. Mater. Chem. A, 2022, 10, 4926-4935

b

Drastic scaling relations between Li excess and laser heating energy were found for samples with Li conducting channels aligned with applied E-field

Suppressed correlation was discovered for samples with an alternate orientation, which validates the contributions of the anisotropic transport properties SIMS is an analytical technique based on the measurement of the mass of ions ejected from a solid surface after the surface has been bombarded with high energy (1-25 keV) primary ions.

Block Diagram of SIMS Technique

Adapted from Wilson, Stevie, and Magee, p. I-8.

Time of Flight Mass Spectrometer

LMIG: Single Ion

LMIG: Un-bunched Beam

Ι

Ion Beam Sputtering

Graphic courtesy of EAG Laboratories http://www.eag.com

Sputtered species include:

- Monoatomic and polyatomic particles of sample material (positive, negative or neutral)
- Resputtered primary species (positive, negative or neutral)
- Electrons
- Photons

PHI nanoTOF II Parallel Imaging MS/MS

Diagram courtesy of:

© 2025 University of Illinois Board of Trustees. All rights reserved.

Static and Dynamic SIMS

Dynamic SIMS

•Ultra surface analysis
•Elemental or molecular analysis
•Analysis complete before significant fraction of molecules destroyed

Material removalElemental analysisDepth profiling

Courtesy Gregory L. Fisher, Physical Electronics

I

Trace Analysis

^{© 2025} University of Illinois Board of Trustees. All rights reserved.

40

InAs/GaAs Quantum Dots

In⁺ Linescans of Quantum Dots

© 2025 University of Illinois Board of Trustees. All rights reserved.

TOF-SIMS Imaging of Patterned Sample

Courtesy Josh Ritchey, Audrey Bowen, Ralph Nuzzo and Jeffrey Moore, University of Illinois

Comparison of Static and Dynamic SIMS

TECHNIQUE	STATIC	DYNAMIC
FLUX	< 10 ¹³ ions/cm ² (per experiment)	~10 ¹⁷ ions/cm ² (minimum dose density)
INFORMATION	Elemental + Molecular	Elemental
SENSITIVITY	1 ppm	< 1 ppm (ppb for some elements)
TYPE OF ANALYSIS	Surface Mass Spectrum 2D Surface Ion Image	Depth Profile Mass Spectrum 3D Image Depth Profile
SAMPLING DEPTH	2 monolayers	10 monolayers
SPATIAL RESOLUTION	0.1 – 1.0 μm	0.1 -1.0 μm
SAMPLE DAMAGE	Minimal	Destructive in analyzed area – up to 500 μm per area

GaAs/AlGaAs Depth Profile

5

© 2025 University of Illinois Board of Trustees. All rights reserved.

15kV Ga⁺

300V O₂⁺

with oxygen flood

Quantitative Analysis: SIMS

In SIMS, the yield of secondary ions is strongly influenced by the electronic state of the material being analyzed.

$$I_s^m = I_p y_m \alpha^+ \theta_m \eta$$

 I_s^m = secondary ion current of species *m* I_p = primary particle flux

 y_m = sputter yield

 $lpha^{\scriptscriptstyle +}=$ ionization probability to positive ions

 θ_m = factional concentration of m in the layer

 η = transmission of the analysis system

Total Ion Sputtering Yield

Sputter yield (y_m **):** ratio of number of atoms sputtered to number of impinging ions, typically 5-15

Ion sputter yield ($y_m \bullet \alpha^+$ **):** ratio of ionized atoms sputtered to number of impinging ions, 10⁻⁶ to 10⁻²

Ion sputter yield may be influenced by:

Matrix effects

- •Surface coverage of reactive elements
- •Background pressure in the sample environment
- •Orientation of crystallographic axes with respect to the sample surface

•Angle of emission of detected secondary ions

First principles prediction of ion sputter yields is not possible with this technique.

Courtesy of Prof. Rockett

 $|I_s^m = I_p y_m \alpha^+ \theta_m \eta|$

Determination of RSF Using Ion Implants

Effect of Primary Beam on Secondary Ion Yields

Graphic courtesy of EAG Laboratories http://www.eag.com

Oxygen bombardment

When sputtering with an oxygen beam, the concentration of oxygen increases in the surface layer and metal-oxygen bonds are present in an oxygen-rich zone. When the bonds break during the bombardment, secondary ion emission process, oxygen becomes negatively charged because of its high electron affinity and the metal is left with the positive charge. Elements in yellow analyzed with oxygen bombardment, positive secondary ions for best sensitivity.

Cesium bombardment

When sputtering with a cesium beam, cesium is implanted into the sample surface which reduces the work function allowing more secondary electrons to be excited over the surface potential barrier. With the increased availability of electrons, there is more negative ion formation. Elements in green analyzed with cesium, negative secondary ions for best sensitivity.

Positive and Negative Secondary Ions

© 2025 University of Illinois Board of Trustees. All rights reserved.

Depth Profile Application with Hydrogen

Detects hydrogen

Large dynamic range

B Depth Profile in Si(001)

^{© 2025} University of Illinois Board of Trustees. All rights reserved.

Electrolessly etched silicon nanowire arrays

Dope NW tips by SODs

J.S Sadhu, H. Tian, T. Spila, J. Kim, B. Azeredo, P. Ferreira, and S. Sinha. *Nanotechnology* **25**, 375701 (2014).

Transition-Metal Accumulation on Anodes in Li-ion Batteries

Summary

Atom Probe

Spatial Resolution 0.1 – 0.3 nm in depth 0.3 – 0.5 nm laterally

Field of View 100 – 200 nm laterally

Time-of-flight mass analysis

Mass range from 1 – 600 amu

Compositional analysis

Near 100% ionization of emitted atoms Up to 80% of all atoms analyzed Sensitivity ~ ppm

Information

Surface Mass Spectrum 2D Surface Ion Image Elemental Depth Profiling 3D Image Depth Profiling

Elements Detectable H and above

Sensitivity

ppb - atomic %

Analysis Diameter/Sampling Depth

~1 mm - several mm/0.5 - 1nm

AMC2025: Many thanks to our sponsors!

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

GRAINGER ENGINEERING