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Light properties

• Direction of propagation

• Electric field direction or polarization

• Photon energy or wavelength

• Intensity

• Propagation speed
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Light interactions

• Transmission

• Reflection

• Absorption

• Emission

• Scattering

• Refraction

Non-linear effects

• SFG 

• SHG

• DFG

• Multi-photon absorption
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Size

Lattice structure, dopants

Temperature

Concentration

Composition

Microstructure

Thickness

Stress

Light interactions with matter
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Light interactions with matter
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Spectroscopy
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Light interactions

• Transmission
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Light interactions

• Transmission

• Reflection

• Absorption
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What is measured:

 The transmitted and reflected light intensity as a function of the incident photon energy, which depends 

on the material’s electronic, atomic, chemical and  morphological structure. 

Transmission, Reflection, Absorption

UV-Vis-NIR 

IR 
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Instrumentation:

Spectrophotometry (UV-VIS-NIR)
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Instrumentation:

Spectrophotometry (UV-VIS-NIR)
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Spectrophotometry (UV-VIS-NIR)
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Solid material (CdS)

Electronic levels Electronic bands

Conduction band

Valence band

Monoatomic gas (𝐻2)

Absorption spectrum

(white light)
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Optical band gap determination of CdS thin films as a 

function of growth substrate temperatures

Spectrophotometry (UV-VIS-NIR)

m = 0.5 for direct and 2 for indirect allowed transitions.

Eg=2.41

Eg=2.40

Eg=2.39

J. Surf. Eng. Mat. and Adv. Tech. 3, 43 (2013)

Tauc’s relation: 𝛼ℎ𝜈 = 𝐴 ℎ𝜈 − 𝐸𝑔
𝑚
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Using absorbance to determine Rhodamine B concentration 

in water solutions

Spectrophotometry (UV-VIS-NIR)

Abs = K l c = a l 

Beer-Lambert Law

Abs = log (1/T)
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Spectrophotometry (UV-VIS-NIR)
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Spectrophotometry (UV-VIS-NIR)

Using transmission interference fringes to determine 

thickness

𝜆𝑚 =
𝑚

𝜈
= 2𝑛𝑑𝑠𝑖𝑛𝜃
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Spectrophotometry (UV-VIS-NIR)

Al2Si4O10(OH)2

Mg3Si4O10(OH)2

Images from Wikipedia and eurotalc.com

Spectra from Developments in Clay Science, Vol. 8. Ch. 5 
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Excitations in materials

• Plasmons

Plasmons are quanta of collective motion of charge-carriers in 

a gas with respect of an oppositely charged background. They 

play a significant role on transmission and reflection of light.

Spectrophotometry (UV-VIS-NIR)

Phys. Today, 64, 39 (2011) 
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Spectrophotometry (UV-VIS-NIR)

Applied Materials Today 8, 68 (2017) 

Optical Materials Express, 332858 (2018)
22
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Vibrational spectroscopy

Normal vibrational modes in molecules:

 
H2O (3 modes)CO2 (4 modes)

Number of modes: 

3N-6 for non-linear molecules

3N-5 for linear molecules

CH4 (9 modes)

 (3657 cm-1)

 (1595 cm-1)

 (3756 cm-1)

 =  cm-1 

 =  cm-1 

 =  cm-1 
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Normal vibrational modes in solids:

 SWCNT

GaN
Sb/GaAs(110)

Vibrational spectroscopy

24
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IR active vibrations

Fourier Transform IR spectroscopy (FTIR)

25

The intensity of a vibrational absorption 

depends on the change of the transition’s 

dipole momentum caused by that 

vibration, so a vibration mode i will be 

“IR active” only when the vibration 

causes a change in the dipole 

momentum of the molecule, i.e.  ≠ 0 
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IR active vibrations

Fourier Transform IR spectroscopy (FTIR)

26
Journal of Near Infrared Spectroscopy, 6 (1998)

The intensity of a vibrational absorption 

depends on the change of the transition’s 

dipole momentum caused by that 

vibration, so a vibration mode i will be 

“IR active” only when the vibration 

causes a change in the dipole 

momentum of the molecule, i.e.  ≠ 0 

These vibrations appear as “dark bands”  

in the transmitted light spectrum 
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Fourier Transform IR spectroscopy (FTIR)

L = n => constructive interference

L = (n+1/2)  => destructive interference

Instrumentation:

 The FTIR uses a Michelson interferometer with a moving 
mirror, in place of a diffraction grating or prism. 

The Nobel Prize in Physics 1907

Albert A. Michelson

"for his optical precision instruments and the 

spectroscopic and metrological 

investigations carried out with their aid"

The Nobel Foundation

27
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Fourier Transform IR spectroscopy (FTIR)
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Fourier Transform IR spectroscopy (FTIR)

But what is the Fourier Transform? A visual introduction.

30
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Fourier Transform IR spectroscopy (FTIR)
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FTIR can be used to identify components in a mixture by comparison 

with reference spectra.

J. of Archaeological Sci. 39 (2012), 1227

Discovery of beeswax as binding agent on a 6th-century 

BC Chinese turquoise-inlaid bronze sword
Wugan Luo, Tao Li, Changsui Wang, Fengchun Huang

Fourier Transform IR spectroscopy (FTIR)

32
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Fourier Transform IR spectroscopy (FTIR)

Al2Si4O10(OH)2

Mg3Si4O10(OH)2

Images from Wikipedia and eurotalc.com

Spectra from Developments in Clay Science, Vol. 8. Ch. 5 
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Strengths:

•   Very little or simple sample preparation.

•   Simplicity of use and data interpretation.

•   Short acquisition time, for most cases.

•   Non destructive.

•   Broad range of photon energies.

•   High sensitivity (~ 0.1 wt% typical for FTIR).

Spectrophotometry (UV-VIS-NIR) and FTIR

Complementary techniques:

Raman, Electron Energy Loss Spectroscopy (EELS), Extended X-ray Absorption 

Fine Structure (EXAFS), XPS, Auger, SIMS, XRD, SFG.

Limitations:

•   Reference sample is often needed for quantitative 

analysis.

•   Many contributions to the spectrum are small and 

can be buried in the background.

•   Usually, unambiguous chemical identification 

requires the use of complementary techniques.

•   Limited spatial resolution.

nanocomposix.com
34
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Light scattering

35
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Light scattering

36
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Sir Chandrasekhara Venkata Raman

The Nobel Prize in Physics 1930 was awarded to Sir Venkata Raman "for his work on 

the scattering of light and for the discovery of the effect named after him".

The Nobel Foundation

Light scattering

Sir Kariamanikkam Srinivasa Krishnan
Co-discoverer of Raman scattering, for which his mentor C. V. Raman was awarded the 

1930 Nobel Prize in Physics

37
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Raman spectroscopy

Ground state

Excited state

Virtual states

Vibrational states

Resonance Raman
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What is measured:

 The light inelastically scattered by the material.

Basic principle:

The impinging light couples with the lattice 

vibrations (phonons) of the material, 

and a small portion of it is inelastically 

scattered. The difference between the 

energy of the scattered light and the 

incident beam is the energy absorbed or 

released by the phonons.

IR 38
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Raman spectroscopy

Impinging light couples with vibration 

modes of the material:

• Phonons

• Molecular vibrations

http://flex.phys.tohoku.ac.jp/~pourya

http://exciting-code.org

Materials Research Laboratory

1000 2000 3000

 

R
a
m

a
n
 i
n

te
n

s
it
y
 (

a
rb

. 
u

n
it
s
)

Raman Shift (cm
-1
)

Diamond

CNT

Coal (mineral)

Graphite

Coal (vegetal)

39



© 2025 University of Illinois Board of Trustees. All rights reserved. 

Raman spectroscopy

40

Instrumentation:
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Classical Approach

E

p



Raman spectroscopy
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The α tensor is dependent on the shape, strength, and dimensions of the chemical bond. Since 
chemical bonds change during vibrations, α is dependent on the vibrations of the molecule:

the dipole oscillates with three frequencies simultaneously, corresponding to the three possible scattering modes 

(Rayleigh, Stokes Raman and anti-Stokes Raman)

Raman spectroscopy

42
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Raman spectroscopy

44
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IR active vibrations

Fourier Transform IR spectroscopy (FTIR)

45
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Raman active vibrations

Raman spectroscopy

The intensity of the Raman scattering linked to a vibrational state depends on the change in the 

polarizability tensor . 

46
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Raman spectroscopy compared to FTIR

FTIR and Raman:  

The two techniques are complementary 

(different selection rules).

 ≠ 0 

47
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48

Raman spectroscopy compared to FTIR

Canadian Journal of Chemistry, 43 (1965)

Journal of Near Infrared Spectroscopy, 6 (1998)
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Characteristic Raman 

frequencies

Raman peak intensity

Raman peak 

frequency shift

Raman peak width

Raman peak 

polarization 

dependency

Identity and 

composition of 

materials

Volume of material 

probed

Strain, stress, crystal 

lattice distortion

Crystallinity of material

Crystal orientation and 

symmetry

Studying the … … we can estimate …

49
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C content

Presence of N vacancies yields 

poor crystallinity

Substitutional C fills N vacancies 

improving the crystallinity

C incorporates interstitially causing a 

degradation of the crystal lattice 

Molecular and crystalline structure characterization

Raman spectroscopy

50
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Crystalline structure and defect characterization

Raman spectroscopy

The inset shows the linear dependence between the two 

parameters at low defect concentration.

Graphene

Nanophotonics 6, 1219 (2017) 51
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Composition and distribution of compound polymer components

Raman spectroscopy

52
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Strain/stress

Raman spectroscopy

Nano Lett. 18, 2098 (2018) 
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Primary Strengths:

• Very little sample preparation.

• Structural characterization.

• Non-destructive technique.

• Chemical information.

• Complementary to FTIR.

Raman spectroscopy

Primary Limitations:

• Expensive apparatus (for high spectral/spatial resolution 

and sensitivity).

• Weak signal, compared to fluorescence. 

• Limited spatial resolution (diffraction limited).

Complementary techniques:

FTIR, EELS, Mass spectroscopy, EXAFS, XPS, AES, SIMS, XRD, SFG.
54
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Luminescence

57
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Lifetime: Phosphorescence, fluorescence

Mechanism: Photoluminescence, bioluminescence, chemoluminescence, 

thermoluminescence, piezoluminescence, etc.

Trevor Morris 

Luminescence

Radim Schreiber

Disney Pixar

Profilephotocovers.com

Profilephotocovers.com

Charles Hedgcock ©
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What is measured:

 The emission spectra of materials due to radiative recombination following photo-excitation. 

Basic principle:

direct band gap indirect band gap

Conduction band

Valence band

Photoluminescence

59
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Instrumentation:

Photoluminescence

60



© 2025 University of Illinois Board of Trustees. All rights reserved. 

Conduction band

Valence band

FE
D

A
(Ao,X)

(Do,X)

GaAs

(D+,X)

Jap. J. App. Phys. 23, L100 (1984)

Photoluminescence

61

Defect luminescence in GaAs
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Photoluminescence

Phys. Stat. Solidi (b) 230 (2002b), R4 

Photoluminescence spectra of InN layers 

with different carrier concentrations.

  1 - n = 6x1018 cm-3 (MOCVD);

 2 - n = 9x1018 cm-3 (MOMBE);

 3 - n = 1.1x1019 cm-3 (MOMBE);

 4 - n = 4.2x1019 cm-3 (PAMBE).

Carrier concentration

62



© 2025 University of Illinois Board of Trustees. All rights reserved. 

Photoluminescence

InxGa1-xN alloys. Luminescence peak positions of 

catodoluminescence and photoluminescence spectra 

vs. concentration x.

The plots of luminescence peak positions can be fitted to the 

curve 

Eg(x)=3.48 - 2.70x - bx(1-x)

 with a bowing parameter of b=2.3 eV

Ref.1 - Wetzel., Appl. Phys. Lett. 73, 73 (1998).

Ref.2 - V. Yu. Davydov., Phys. Stat. Sol. (b) 230, R4 (2002). 

Ref.3 - O’Donnel., J. Phys .Condens. Matt. 13, 1994 (1998).

Extracted from Phys. Stat. Sol. (b) 234 (2002) 750 

Alloy composition

63



© 2025 University of Illinois Board of Trustees. All rights reserved. 

Width and quality of semiconductor quantum wells.

3nm InGaAsN QW

5nm InGaAsN QW

9nm InGaAsN QW

Photoluminescence

64
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Photoluminescence

Number of layers in 2D materials

Phys. Rev. Lett. 105, 136805 (2010)

a) PL spectra for mono- and bilayer MoS2. 
Inset: PL QY of thin layers for N = 1–6. 

b) Normalized PL spectra by the intensity of peak A of thin layers of MoS2 for N = 1–6. Feature I for N = 4–6 is magnified for clarity. 
c) Band-gap energy of thin layers of MoS2, inferred from the energy of the PL feature I for N = 2–6 and from the energy of the PL peak A for N = 1. The dashed line represents the 

(indirect) band-gap energy of bulk MoS2.
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Photoluminescence

Defects in 2D materials

arXiv:1608.02043

Defect  induced  PL  emission.  

a) Schematic  diagram  of  electron  beam  irradiation  on  monolayer  WSe2 sample during the EBL process. 
b) PL  spectrum  of  pristine  monolayer  WSe2 and  monolayer  WSe2 after EBL. 

The  inset  shows  optical  image  of WSe2 with PMMA patterned by EBL, scale bar is 5 m
c) PL  spectra  of  a  pristine  WSe2 under different e- beam irradiation density.

c

WSe2

66
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Photoluminescence

Excitonic molecule luminescence 

in Si

Phys. Rev. Lett. 17, 860 (1966)Semiconductors 33 (10), October 1999

Free-exciton and bound-exciton 

luminescence in GaN
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Photoluminescence

68

Pitfalls, artifacts, corrections …

www.edinst.com/blog

www.newport.com
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Photoluminescence

69

Pitfalls, artifacts, corrections …

www.edinst.com/blog

Non-ideal components 

introduce spectral distortions
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Strengths:

• Very little to none sample preparation.

• Non destructive technique.

• Very informative spectrum.

Limitations:

• Often requires low temperature.

• Data analysis may be complex.

• Many materials luminescence weakly.

Complementary techniques:

Ellipsometry, Modulation spectroscopies, 

Spectrophotometry, Raman.

Photoluminescence

70
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Light properties

• Direction of propagation

• Electric field direction or polarization

• Photon energy or wavelength

• Intensity

71
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Polarization

72
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Polarization
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Polarization
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Polarization
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Polarization

76
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Ellipsometry

Basic principle:

The reflected light emerges from the surface elliptically polarized, i.e. its p and s polarization 

components are generally different in phase and amplitude. 

77
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a

b

c

d
b

a

c

Ellipsometry
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What is measured:

 The changes in the polarization state of light upon reflection from a mirror like surface. 

Ellipsometry

79
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What is measured:

 The changes in the polarization state of light upon reflection from a mirror like surface. 

Ellipsometry

detectors

rotating compensators

Sample holder

goniometers

polarizer

Light source

80
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SiO2                                      4923.1 ± 0.2 ÅSiO2                                        18.7 ± 0.2  Å

Ellipsometry

Applications

Si Si
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Ellipsometry

Applications

Ellipsometric () and () spectra of Cd1-xZnxS thin films deposited under 

the different concentration of ammonia: 0.19, 0.38, 0.56, and 0.75 M

Jpn. J. Appl. Phys. 49 (2010) 081202

72°

[NH4OH] (M) Thickness (nm) Roughness 

(nm)

ZnS (%) Band-gap (eV)

0.19 42.12 23.77 99.7 3.49

0.38 73.79 7.15 45.5 2.52

0.56 50.89 5.94 32.3 2.45

0.75 18.59 4.54 5.2 2.43

82
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Ellipsometry

Applications

Jpn. J. Appl. Phys. 49 (2010) 081202

➢ Composition

➢ Surface roughness

➢ Film thickness

➢ Band gap energy

➢ Optical constants (dielectric 

function)

83



© 2025 University of Illinois Board of Trustees. All rights reserved. 

Ellipsometry

Strengths:
– Fast.

– Measures a ratio of two intensity values and a phase.

• Highly accurate (even in low light levels).

• No reference sample necessary.

• Not susceptible to scatter, lamp or purge fluctuations.

• Increased sensitivity, especially to ultrathin films (<10nm).

– Can be used in-situ.

Limitations:
− Flat and parallel surface and interfaces with 

measurable reflectivity.

− A realistic physical model of the sample is required 

to obtain most useful information. 

Complementary techniques:

PL, Modulation spectroscopies, X-Ray Photoelectron Spectroscopy, Secondary Ion 

Mass Spectroscopy, XRD, Hall effect.

84
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Optical microscopy 

85
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Optical microscopy 

“Conventional" Optical Microscopy

Image

Eye

Eyepiece

Tube lens

Objective

Object

Perceived image
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Optical microscopy 

Bright fieldPhase contrast Dark field Polarizing
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Optical microscopy 

Bright fieldPhase contrast Dark field Polarizing

Fibers in bright field and dark field

88
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• But how small a thing can we see?

Resolution

89
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• But how small a thing can we see?

Resolution
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Lateral resolution 

91

The Airy pattern
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Lateral resolution
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Lateral resolution

Numerical aperture
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Resolution

Rayleigh criterion

Abbé criterion
𝑑 ≈

𝜆

𝑁𝐴𝑐𝑜𝑙 + 𝑁𝐴𝑜𝑏𝑗
≈

𝜆

2𝑁𝐴

Lateral resolution
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Depth resolution 

95
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Confocal microscopy 

• Increased contrast => 200:1.

• Slightly increased  in plane resolution (1.5 x) 

• Significantly increased resolution along the optical axis.

• Scanning image formation.

96
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Confocal microscopy 

• Increased contrast => 200:1.

• Slightly increased  in plane resolution (1.5 x) 

• Significantly increased resolution along the optical axis.
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Confocal microscopy 

The relation of the first ring maximum amplitude to the amplitude in the center is 2% in case of 

conventional point spreading function (PSF) in a focal plane, while in case of a confocal microscope 

this relation is 0.04%.
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Confocal microscopy combined with spectroscopy

Widefield 

microscope 

PSF

Confocal 

microscope 

PSF

50 m

Confocal microscopy reconstruction of a 3D capillary bed

PLOS ONE 7(12): e50582 (2012)
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Chemical composition

Component identification

Components distribution

Earth and Space Science 5 (8), 380 (2018) DOI: (10.1029/2018EA000369) 
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Confocal microscopy combined with spectroscopy
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Confocal microscopy z-stack

Confocal microscopy for measuring topography 
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Confocal microscopy for measuring topography 
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Confocal microscopy 

Scratch on glass
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Raman spectroscopy

Primary Limitations:

• Expensive apparatus (for high spectral/spatial resolution and sensitivity).

• Weak signal, compared to fluorescence. 

• Limited spatial resolution (diffraction limited).
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The More Time Approach
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The More Power Approach
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Plasmons can be driven by photons at resonance to build large standing wave electric fields.

That leads to a strong enhancement of Raman scattering, proportional to the squared E field strength.

Surface Plasmons
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Surface Enhanced Raman Spectroscopy (SERS)

Typically achieved with corrugated 

gold/silver surface or gold/silver 

nanoparticles with molecules of 

interest attached.

Capable of boosting Raman signal 

up to 14 Orders of Magnitude or 

more! Science  275, 1102 (1997)

Chem. Rev. 117, 5002, (2017)

108



© 2025 University of Illinois Board of Trustees. All rights reserved. 

Surface Enhanced Raman Spectroscopy (SERS)

Anal. Methods, 6, 9547 (2014)

4-MBA
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Phys. Rev. Lett.103, 186101 (2009)

Confocal Raman Image

Carbon Nanotubes

Confocal Raman Microscopy

110

That’s cool, but what about …

• Limited spatial resolution (diffraction limited).
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Raman signal TERS enhancement

Tip Enhanced Raman Spectroscopy (TERS)

Chem. Soc. Rev. 46, 4077 (2017)

What is really cool is that this also works 

with a single metalized sharp tip, such as 

an STM or AFM tip!

Not only do you get the electric field enhancement, 

but now the source of the Raman signal is 

extremely localized.

111



© 2025 University of Illinois Board of Trustees. All rights reserved. 

Confocal Raman Image                  Tip Enhanced Raman Image

Carbon Nanotubes
Phys. Rev. Lett.103, 186101 (2009)

Tip Enhanced Raman Spectroscopy (TERS)
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Nano-FTIR

Nature Communications 4, 2890

Near-field scanning optical nanospectroscopy

Nature 000, 1-4 (2012) doi:10.1038/nature11253

Science 344, 1369
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