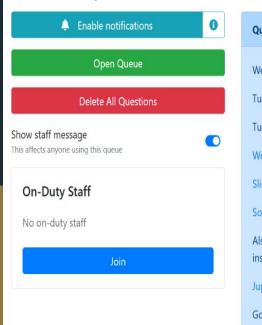


C.A.R.E. PHYS 213 Quiz 2 Review Session

CARE / CARE PHYS 213 Exam Review Session

No location specified



	Z	^	
sion!			
uring these times:			
n the test. If you do not have a Jupyter Notebook environme y suggestion for this coding example!	nt		

This queue is closed. Check back later!

Units for the Exam

- Kinetic Theory of Ideal Gases
- Quasistatic Processes
- Thermodynamic Cycles
- Gibbs Free Energy

Ideal gas and Equipartition

• Ideal Gas: Approximation of particles as points with no interactions:

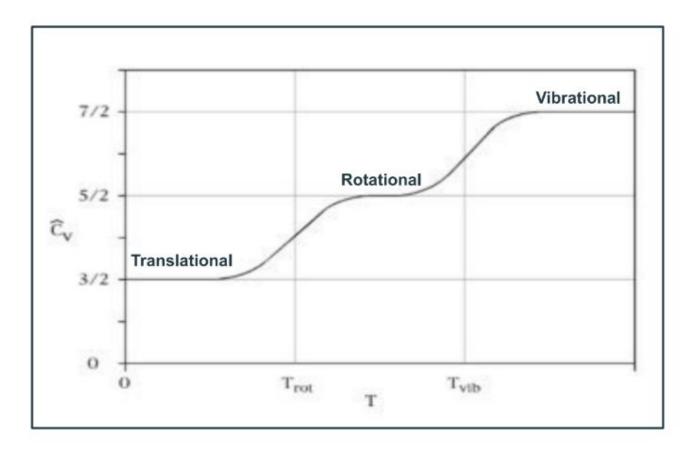
• Follows ideal gas law:
$$pV = NkT = nRT$$

• Equipartition: each degree of freedom contributes $\frac{1}{2} kT$ of energy

 $\bullet \quad U = (N_{DOF}/2)kT$

• Molar heat capacity:

$$\bullet \quad c_{\rm M} = (N_{\rm DOF}/2)kN_{\rm A}$$

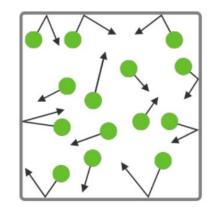


Root-Mean-Square Velocity

- **v**_{rms}: Average (translational) velocity of gas particles
- Translational Kinetic Energy: $KE_{translational} = 1/2 \text{ m} (v_{rms})^2$
- Relationship to temperature:

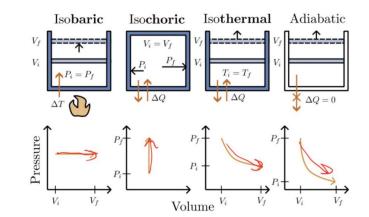
$$\frac{1}{2}mv_{rms}^2 = \frac{3}{2}kT$$

- This only applies to **ONE PARTICLE**
- Notice: this does <u>NOT</u> depend on the number of DOFs; it's <u>ALWAYS</u> (3/2)*kT*
 - Why? Translational KE only depends on the translational modes motion (there are only 3 translational modes: v_x , v_y , v_z)



Thermodynamic Processes

- **Isochoric** or Isovolumetric
 - Constant VOLUME
- <u>Isobaric</u>
 - Constant <u>PRESSURE</u>



• Isothermal

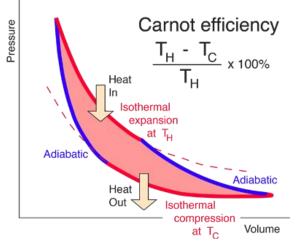
• Constant <u>TEMPERATURE</u>, <u>REVERSIBLE</u> $(\Delta S_{total} = 0, \Delta U = 0)$

• <u>Adiabatic</u>

• Constant <u>HEAT</u> (dQ = 0), <u>REVERSIBLE</u> $(\Delta S_{total} = 0, \Delta Q = 0)$

Reversible Processes

- Isothermal + Adiabatic processes are <u>REVERSIBLE</u>
 - $\circ \Delta S_{total} = 0$ (no change in entropy)
 - For <u>isothermal</u> processes:
 - PV = constant
 - For <u>adiabatic</u> processes:
 - $PV^{\gamma} = constant$
 - $\gamma = (2/N_{DOF}) + 1$ (given on equation sheet)



Example Problem - Adiabatic Process

 Assume we have a gas undergoing an adiabatic process, determine the work done given the following parameters:

•
$$V_i = 10 \text{ m}^3$$
, $p_i = 10 \text{ kPa}$
• $V_f = 4 \text{ m}^3$, $N_{DOF} = 3$

$$\gamma = \frac{2}{N_{DOF}} + 1 = \frac{2}{3} + 1 = \frac{5}{3}$$

$$pV^{\gamma} = Constant = p_i V_i^{\gamma} = (1000)(10)^{\frac{5}{3}} = 464158.88$$

$$W = \int_{V_i}^{V_f} p dV = \int_{V_i}^{V_f} \frac{C}{V_i^{\gamma}} dV = \left[C \frac{V_f^{\left(-\frac{5}{3}+1\right)}}{-\frac{5}{3}+1} \right] - \left[C \frac{V_i^{\left(-\frac{5}{3}+1\right)}}{-\frac{5}{3}+1} \right]$$

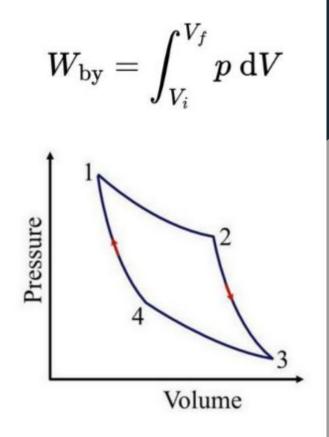
$$W = \left[(464158.88) \frac{4^{\left(-\frac{5}{3}+1\right)}}{-\frac{5}{3}+1} \right] - \left[(464158.88) \frac{10^{\left(-\frac{5}{3}+1\right)}}{-\frac{5}{3}+1} \right] \approx -126.30 \, kJ$$

 $W \approx -126.30 \, kJ$

p-V Diagrams

• Used to visualize thermodynamic cycles

- Area enclosed in the curve is equal to the work per cycle
 - Clockwise direction: work is positive (engine did work)
 - Counterclockwise direction: work is negative (work done on engine)



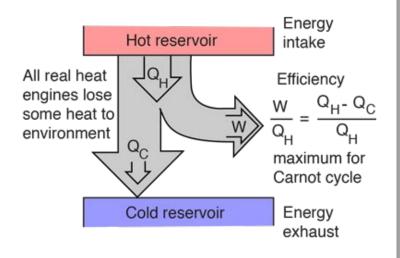
Heat Engines

- Cycles of Thermodynamic processes are used to make engines, heat pumps, and refrigerators
- Efficiency of engines: $\varepsilon = \frac{W_{by}}{Q_H} \le 1 \frac{T_C}{T_H}$

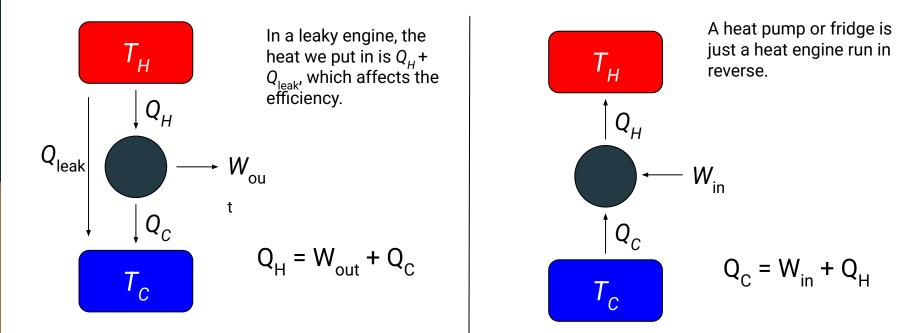
• Heat pump:
$$COP = \frac{Q_H}{W_{on}} \le \frac{1}{1 - \frac{T_C}{T_H}}$$

• Refrigerator: $COP = \frac{Q_C}{W_{on}} \le \frac{1}{\frac{T_H}{T_C} - 1}$

Efficiency/COP can be thought of as "what you get out" divided by "what you put in."



Engine, Pump, and Refrigerator Diagrams



Heat Engine Diagram

Heat Pump/Refrigerator Diagram

Gibbs Free Energy

• Useful when temperature and pressure are fixed

$$\mathbf{G} = \mathbf{U} - T_{env}S + pV$$

- Minimizing Gibbs of a system will maximize total (system + environment) Entropy
 - As a system approaches equilibrium, free energy will decrease to a minimum

- Fundamental Thermodynamic Relation in Equilibrium:
 - $\circ \quad TdS = dU + pdV \mu dN$
 - $\mu = (dG/dN) \rightarrow \mu N = G$ (at fixed temperature and pressure)
 - Equilibrium favors lowest μ

Good luck!

Feel free to ask any questions you may have.

You got this!

