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Math 241 − Calculus III Midterm 3 Exam Review

1. Making an appropriate change of variables, compute the following double integral over the region
bound by a circle of radius 2 and a circle of radius 5.∫∫

D

ex
2+y2 dA

Using polar coordinates gives the following integral

∫∫
D

ex
2+y2 dA =

∫ 2π

0

∫ 5

2

rer
2

drdθ

Then using a u−substitution u = r2 for the r dependence

1

2

∫ 2π

0

∫ 25

4

eu dudθ = π(e25 − e4) ≈ 2.26× 1011

2. Consider the region R:

x

y

y = 1

y = 2

xy = 1
xy = 2

R

u

v

(1,1) (2,1)

(2,2)(1,2)

S
T

(a) Suppose there exists a transformation S: R2 → R2 from S to R. Find T (u, v)

(b) Use the answer from (a) to evaluate
∫∫

R
x2dA

(a) It’s convenient to make the substitution v = y since both v and y have common lines at v = y = 1
and v = y = 2. The substitution of u would then be u = xy. (Check u = 1 and u = 2. They
match to xy = 1 and xy = 2.)

v = y ∈ [1, 2]

u = xy ∈ [1, 2]

To solve for x, divide by y and then substitute in v for y.

(x, y) = T (u, v) =
(u
v
, v
)
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(b) Substitute u
v
for x and v for y calculate the Jacobian for this transformation.∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1
v − u

v2

0 1

∣∣∣∣∣∣ = 1

v

Note that the Jacobian matrix is taken as the absolute value of the determinant. Now calculate
the integral ∫ 2

1

∫ 2

1

(u
v

)2 1

v
dudv =

7

8
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3. A toilet paper manufacturing company has increased their production. Unfortunately, this pro-
duction increase has caused a major manufacturing error! As you move towards the center of any
one toilet paper roll, the sheets get progressively more dense. The density of a toilet paper roll
can be modeled using the following function:

ρ(r) = cos

(
π(r − 1)

6

)
+ 1

r is the radial distance away from the center of
the roll (inside the center cardboard tube). The
whole roll can be modeled as a cylinder with
an outer radius of 6, and inner radius of 2 (the
cardboard tube radius), and a height of 10.

2cm6cm

10cm

(a) Without using a calculator, calculate the mass of the toilet paper roll if the density everywhere
was just 1 (leave π in your answer)

(b) Set up the triple integral to solve for the mass of a toilet paper roll. Neglect the weight of the
inner cardboard tube for your calculation.

(c) Without using a calculator, solve the integral (leave π in your answer)

(a) The mass of the tube is equal to the density times the volume:

m = ρV = ρπ(r2outer − r2inner)h = 320π

(b) Cylindrical coordinates are most useful here since the figure is a cylinder. The mass is found by
integrating the density with respect to dV (in cylindrical coordinates).

∫ 10

0

∫ 2π

0

∫ 6

2

(
cos

(π(r − 1)

6

)
+ 1

)
r drdθdz

(c) ∫ 10

0

∫ 2π

0

∫ 6

2

(
cos

(π(r − 1)

6

)
+ 1

)
rdrdθdz

(10)(2π)

∫ 6

2

(
cos

(π(r − 1)

6
)+1))rdr

20π
[(r2

2

)∣∣∣6
2
+

∫ 6

2

cos
(π(r − 1)

6

)
rdr

]
Integration by parts
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u = r, v =
6

π
sin

(π
6
(r − 1)

)
20π

[
18− 2 +

( 6
π
sin

(π
6
(r − 1)

)
r
)6

2
−
∫ 6

2

6

π
sin

(π
6
(r − 1)

)
dr

]

20π

[
16 +

36

π
sin

(5π
6

)
− 12

π
sin

(π
6

)
−

∫ 6

2

6

π
sin

(π
6
(r − 1)

)
dr

]

20π

[
16 +

18

π
− 6

π
+

62

π2
cos

(π
6
(r − 1)

)∣∣∣6
2

]

20π

[
16 +

12

π
+

36

π2

(
cos

(5π
6

)
− cos

(π
6

))]

20π
[
16 +

12

π
+

36

π2

(
−

√
3

2
−

√
3

2

)]

20π
[
16 +

12

π
− 36

√
3

π2

]

320π + 240− 720
√
3

π
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4. What is the x-coordinate of the center of mass for the shaded region if it has a density function
ρ(x, y) = 3x+2y? (Solve the integral by hand then evaluate the final expression with a calculator.)

x =
1

m

∫∫
xρ(x, y)dA,m =

∫∫
ρ(x, y)dA

y =
√
2x → x =

y2

2∫ 4

0

∫ y2/2

0

x(3x+ 2y)dxdy =

∫ 4

0

y6

8
+

y5

4
dy =

y7

56
+

y6

24

∣∣∣∣4
0

≈ 463.238

m =

∫ 4

0

∫ y2/2

0

(3x+ 2y)dxdy =

∫ 4

0

3y4

8
+ y3dy =

3y5

40
+

y4

4

∣∣∣∣4
0

= 140.8

x =
463.238

140.8
≈ 3.29
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5. Find the surface area of z = x2+y2

2
that lies within the cylinder x2 + y2 = 4. (Evaluate the integral

by hand.)

S =

∫∫
D

√
(
∂z

∂x
)2 + (

∂z

∂y
)2 + 1dA

∂z

∂x
= x,

∂z

∂y
= y

S =

∫∫
D

√
x2 + y2 + 1dA

Use Polar Coordinates.

S =

∫∫
D

√
r2 + 1rdrdθ

Use u = r2 + 1 and du = 2rdr

S =

∫∫
D

√
u

2
dudθ =

1

3
u3/2

∫
θ

dθ =
1

3
(r2 + 1)3/2

∣∣∣∣2
0

∫ 2π

0

dθ

(The upper bound for r is 2 because r2 = 4 from the cylinder)

S =
1

3
(
√
125− 1) · 2π
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6. Set up the triple integral of the function f(x, y) using spherical coordinate over the solid shown
below.

f(x, y) =
x2 + y2

z2

The bounds of the solid are shown below:

ρ : 1 ≤ ρ ≤ 2

θ :
π

2
≤ θ ≤ 2π

ϕ : 0 ≤ ϕ ≤ π

2

Convert f(x, y, z) into f(ρ, θ, ϕ)

x2 + y2

z2
=

(ρ sinϕ cos θ)2 + (ρ sinϕ sin θ)2

(ρ cosϕ)2
= tan2 ϕ

∫∫∫
E

f(x, y, z)dV =

∫ π/2

0

∫ 2π

π/2

∫ 2

1

(tan2 ϕ)(ρ2 sinϕ)dρdθdϕ
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7. Using cylindrical coordinate to set up the integral to calculate the mass of a solid that is enclosed
by both the cone z =

√
x2 + y2 and the sphere x2+y2+z2 = 8. The density of the solid is modeled

by f(x, y, z) = arctan (y/x).
Use cylindrical coordinates to represent z as a function of r.
From the cone equation: z =

√
r2 = r

From the sphere equation: z2 = 8− (x2 + y2) = 8− r2 → z =
√
8− r2

Therefore, r ≤ z ≤
√
8− r2

θ spans the entire xy-plane, so 0 ≤ θ ≤ 2π
To solve for the bounds of r, equate the cone and sphere equations.
r =

√
8− r2 → 8 − r2 = r2 → r2 = 4 → r = 2 (Note that there is no negative radius, so −2 is

omitted.)
The function becomes arctan (y/x) = arctan (tan θ) = θ∫ 2

0

∫ 2π

0

∫ √
8−r2

r
θrdzdθdr
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8. Evaluate
∫∫

R
6x− 3ydA where R is the parallelogram with vertices (2, 0), (5, 3), (6, 7), and (3, 4)

using the transformation x = v−u
3

and y = 4v−u
3

.
Plot the vertices in the xy-plane in the uv-plane using the transformation equations. First by
rearranging the equation into u = f(x, y) and v = f(x, y)

3x = v − u, 3y = 4v − u
Combining the two equations to eliminate u , 3x− 3y = −3v

v = y − x, plug this back into 3x = v − u
3x = y − x− u → u = y − 4x

Plugging in the x,y coordinates to u = y − 4x, v = y − x

The bounds of u,v are then −17 ≤ u ≤ −8, −2 ≤ v ≤ 1. Convert the function 6x−3y into f(u, v):

f(u, v) = 6(
v − u

3
)− 3(

4v − u

3
) = −2v − u

Then, we calculate the absolute value of the Jacobian:∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−1

3
1
3

−1
3

4
3

∣∣∣∣∣∣ = 1

3

∫∫
R

6x− 3ydA =
1

3

∫ −8

−17

∫ 1

−2

(−2v − u)dvdu =
1

3

∫ −8

−17

(3− 3u)du =
243

2
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9. Consider the following vector fields F⃗ (x, y, z). Are they conservative? If so, find a function

f(x, y, z) so that ∇f = F⃗ . If not, justify your response.

(a) F⃗ (x, y, z) = ⟨yz, xz, xy + 2z⟩

(b) F⃗ (x, y, z) = ⟨y + ex, x− cos y, 4 + z⟩

(c) F⃗ (x, y, z) = ⟨y, z2, x⟩

Conservative vector field test: a vector field F⃗ is conservative if the curl is the zero vector.

∇⃗ × F⃗ =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ =
〈∂Fz

∂y
− ∂Fy

∂z
,
∂Fx

∂z
− ∂Fz

∂x
,
∂Fx

∂y
− ∂Fy

∂x

〉
= 0⃗

(a) ∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

yz xz xy + 2z

∣∣∣∣∣∣ = ⟨x− x, y − y, z − z⟩ = 0⃗

The vector field is conservative, therefore, a potential function exists. To find it, we must find the
necessary terms from each component (We neglect the constant for now, we’ll add it back later).∫

Fx dx =

∫
yz dx = xyz

∫
Fy dy =

∫
xz dy = xyz

∫
Fz dz =

∫
xy + 2z dz = xyz + z2

We see that the necessary terms are xyz and z2, therefore

The field is conservative and has potential function f(x, y, z) = xyz + z2 + C

(b) ∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

y + ex x− cos y 4 + z

∣∣∣∣∣∣ = ⟨0− 0, 0− 0, 1− 1⟩ = 0⃗

The vector field is conservative, therefore, a potential function exists. To find it, we must integrate
each component (We neglect the constant for now, we’ll add it back later).∫

Fx dx =

∫
y + ex dx = xy + ex∫

Fy dy =

∫
x− cos y dy = xy − sin y
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∫
Fz dz =

∫
4 + z dz = 4z +

1

2
z2

We see that the necessary terms are xy, ex,− sin y, 4z, and 1
2
z2, therefore:

The field is conservative and has potential function f(x, y, z) = xy + ex − sin y + 4z +
1

2
z2 + C

(c) ∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

y z2 x

∣∣∣∣∣∣ = ⟨−2z,−1,−1⟩

This vector field is not conservative. Therefore, a potential function does not exist.

10. The vector field F⃗ = ⟨2xy + 2x + y2, 2xy + 2y + x2⟩ is conservative. Find a potential function f

for F⃗ (a function with ∇f = F⃗ )

F⃗ = ⟨fx, fy⟩ = ⟨2xy + 2x+ y2, 2xy + 2y + x2⟩∫
fx = yx2 + x2 + xy2 + C(y)∫
fy = xy2 + y2 + yx2 + C(x)

Looking at all the terms and comparing with F⃗ , we know that C(y) = y2 and C(x) = x2, therefore
the potential function is:

f(x, y, z) = yx2 + x2 + xy2 + y2
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11. A particle moves along the upper part of an ellipse in the xy-plane that has its center at the origin
with semi-major and semi-minor axes a = 4 and b = 3, respectively. Starting at (a, 0, 0) and
ending at (−a, 0, 0) and subject to the following force field, what is the total work done?

a

b

F⃗ = (3x− 4y+2z)̂i+ (4x+2y− 3z2)ĵ + (2xz− 4y2 + z3)k̂

(1) Find the parameterization of the ellipse

x = 4 cos t, y = 3 sin t, z = 0

dx = −4 sin t dt, dy = 3 cos t dt, dz = 0

Recall that dr⃗ = dxî+ dyĵ + dzk̂

(2) Take the dot product in the line integral for work. (The z component is zero so it can be ignored
here). ∮

F⃗ · dr⃗ =
∫ [

(3x− 4y)̂i+ (4x+ 2y)ĵ
]
· (dxî+ dyĵ)∮

(3x− 4y)dx+ (4x+ 2y)dy

(3) Substitute in the parameterization found in (1)∮
(12 cos(t)− 12 sin(t))(−4 sin(t))dt+ (16 cos(t) + 6 sin(t)(3 cos(t))dt

(4) Determine the times that the particle is at its starting and ending position, which in this case is
0 < t < π. And solve the integral∫ t=π

t=0

[
(12 cos t− 12 sin t)(−4 sin t) + (16 cos t+ 6 sin t)(3 cos t)

]
dt

48π

13 of 16



Math 241 − Calculus III Midterm 3 Exam Review

12. Find the work done by the force field below in moving an object from (1,1) to (2,4) (HINT: Check
if the vector field is conservative).

F⃗ (x, y) = ⟨6y
3
2 , 9x

√
y⟩

First we need to check if this vector field is conservative

∂P

∂y
= 9

√
y and

∂Q

∂x
= 9

√
y

Since ∂P
∂y

= ∂Q
∂x

we can say the vector field is conservative

Now we can find a function f(x, y) such that ∇f = F⃗

∫
Fx dx =

∫
6y

3
2dx = 6xy

3
2

∫
Fy dy =

∫
9x

√
ydy = 6xy

3
2

Thus our potential function is

f(x, y) = 6xy
3
2 + C

Now that we have a potential function we can use the Fundamental Theorem of Line Integrals to
compute the work done in moving from (1,1) to (2,4)

W =

∫
C

F⃗ · dr⃗ =
∫
C

∇fdr⃗ = f(x2, y2)− f(x1, y1) =

f(2, 4)− f(1, 1) = (96 + C)− (6 + C)

W = 90 (units)
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13. Evaluate
∫
C
F · dr where F (x, y) = ⟨3y2 − cos y, x sin y⟩ and C is a clockwise path shown below.

Green’s Theorem states that
∫
C
F · dr =

∮
−C

Pdx+Qdy = −
∫∫

D
∂Q
∂x

− ∂P
∂y
dA

(It is -C because the circle is oriented in a clockwise direction.)

Q = x sin y, P = 3y2 − cos y

−
∫∫

D

∂Q

∂x
− ∂P

∂y
dA = −

∫∫
D

sin y − (6y + sin y)dA =

∫∫
D

6ydA

Use polar coordinates:∫ π

0

∫ 2

0

(6r sin θ)rdrdθ =

∫ π

0

16 sin θdθ = 16[cos(0)− cos(π)] = 32
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14. The graph below shows two vector fields. Answer the following questions for each of them.
(1) Is it a conservative vector field?
(2) Does it have a positive, negative, or zero curl?
(3) Does it have a positive, negative, or zero divergence?

For vector field (a): (1) It is a conservative vector field because the line integral along any closed
path is 0. (2) It has a zero curl because the vectors are not rotating. (3) It has a positive divergence
because the vectors have the tendency to diverge out from a point.

For vector field (b): (1) It is not a conservative vector field because the line integral along the
closed path is nonzero. (2) It has a positive curl as vectors are rotating in the counterclockwise
direction. (3) It has a zero divergence because the vectors are not diverging from a single point.

15. Evaluate
∫
C
∇f · dr⃗ where f(x, y) = yex

2−1 + 4x
√
y and C is given by r⃗(t) = ⟨1− t, 2t2 − 2t⟩ with

0 ≤ t ≤ 2.
Use the fundamental theorem of line integral.∫

C
∇f · dr⃗ = f [r⃗(2)]− f [r⃗(0)]

r⃗(0) = ⟨1, 0⟩, and r⃗(2) = ⟨−1, 4⟩

f [r⃗(2)]− f [r⃗(0)] = f(−1, 4)− f(1, 0) = −4− 0 = −4
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