

C.A.R.E. PHYS 213 Quiz 1 Review Session

CARE / CARE PHYS 213 Exam Review Session

No location specified

	ľ	^	
sion!			
uring these times:			
n the test. If you do not have a Jupyter Notebook environme y suggestion for this coding example!	nt		

This queue is closed. Check back later!

Units for the Exam

- Internal Energy
- Temperature
- Heat Capacity
- Entropy

Internal Energy

• Total energy is <u>ALWAYS</u> conserved

Cooler object

Hotter object

Positive work on a system increases the system's internal energy

● Higher temperature → More Internal Energy

$$\Delta U = W_{on} + Q$$

Change in	Work done	Heat added
internal	on the	to the
energy	system	system

Temperature & Heat Capacity

- Heat Capacity (C) how much energy it takes to increase the temperature of a substance by 1 K/°C
 - Units of J/K
- Larger C → More energy is required to increase the temperature of the object
- Water has a larger heat capacity than Aluminum

Types of Heat Capacity

- Molar Heat Capacity [J/mol K]: The amount of heat required to raise the temperature of **1 mole** of a substance by 1 K/°C
 - $c_{molar} = C/n$, where n is the number of moles
- **Specific Heat Capacity [J/kg K]:** The amount of heat required to raise the temperature of **1 kg** of a substance by 1 K/°C
 - c = C/m, where m is the mass [kg]
- Heat Capacity at a Constant Volume and Constant Pressure:
 - $\circ C_v = dU/dT$
 - $\circ \quad C_p = dU/dT + p \, dV/dT$

Equipartition

Equipartition & Heat Capacity

• Only need to memorize DOFs for monatomic gas, diatomic gas, and solids (3, 5, and 6, respectively)

• For substances under the **<u>equipartition assumption:</u>**

$$U = rac{N_{
m DOF}}{2}NkT \implies C = rac{{
m d}U}{{
m d}T} = rac{N_{
m DOF}}{2}Nk$$
 R = 8.314 J/(mol K)

R = 0.08206 L atm/(mol K)

Entropy

- Microstate vs Macrostate:
 - Microstate: individual, **specific** arrangement
 - Macrostate: property that arises from the microstates
 - Many microstates can lead to the same macrostate
 - Two people have the same weight (macroststate), but the distribution of the weight can be different (microstate)

Entropy (Cont.)

- Entropy (*S*) is a measure of the degree of 'diversity' associated with a macrostate
 - $S = k \ln(\Omega)$, where Ω is the number of microstates
 - Second Law of Thermodynamics: $\Delta S \ge 0$

- Equilibrium
 - Occurs when the macrostate of the system ceases to change
 - The most probable macrostate is the one with the highest entropy (most microstates)
 - Equilibrium is achieved when S, entropy, is maximized

Binomial Coefficient

If I have **N** coins and I am looking for the macrostate with **q** heads, the number of microstates:

$$\binom{N}{q} = \frac{N!}{q!(N-q)!}$$

Example: If I have **20 coins**, how many microstates are associated with the macrostate of getting **7** heads?

Answer:

Binomial Coefficient

If I have **N** coins and I am looking for the macrostate with **q** heads, the number of microstates:

$$\binom{N}{q} = \frac{N!}{q!(N-q)!}$$

Example: If I have **20 coins**, how many microstates are associated with the macrostate of getting **7** heads?

Answer:

$$\binom{20}{7} = \frac{20!}{7! (20-7)!} = 77520$$

- Microstate:
- Macrostate:

Ο

Ο

Ο

• What is the most likely macrostate?

• What is the macrostate with the highest entropy?

- Entropy of a macrostate is simply a measure of the number of microstates associated with it
- More microstates → Higher Entropy, Higher Probability

	•	•	•••	•••	•••	•••
•	2	3	4	5	6	7
•.	3	4	5	6	7	8
•.	4	5	6	7	8	9
•••	5	6	7	8	9	10
••	6	7	8	9	10	11
	7	8	9	10	11	12

- Microstate: set of individual die values
- Macrostate:

Ο

Ο

Ο

• What is the most likely macrostate?

What is the macrostate with the highest entropy?

- Entropy of a macrostate is simply a measure of the number of microstates associated with it
- More microstates → Higher Entropy, Higher Probability

	•	•	•••	•••	•••	•••
•	2	3	4	5	6	7
•.	3	4	5	6	7	8
•.	4	5	6	7	8	9
••	5	6	7	8	9	10
•••	6	7	8	9	10	11
	7	8	9	10	11	12

- Microstate: set of individual die values
- Macrostate: sum of die values

Ο

- What is the most likely macrostate?
 - 0
- What is the macrostate with the highest entropy?

- Entropy of a macrostate is simply a measure of the number of microstates associated with it
- More microstates → Higher Entropy, Higher Probability

	•	•	•••	••	•••	
•	2	3	4	5	6	7
•.	3	4	5	6	7	8
•.	4	5	6	7	8	9
••	5	6	7	8	9	10
•••	6	7	8	9	10	11
	7	8	9	10	11	12

- Microstate: set of individual die values
- Macrostate: sum of die values

Ο

- What is the most likely macrostate?
 - 7: has the largest number of microstates associated with it
 - Probability = 6/36 = 0.167
- What is the macrostate with the highest entropy?

- Entropy of a macrostate is simply a measure of the number of microstates associated with it
- More microstates → Higher Entropy, Higher Probability

	•	••	•••	••	•••	•••
•	2	3	4	5	6	7
•.	3	4	5	6	7	8
•.	4	5	6	7	8	9
•••	5	6	7	8	9	10
••	6	7	8	9	10	11
	7	8	9	10	11	12

- Microstate: set of individual die values
- Macrostate: sum of die values
- What is the most likely macrostate?
 - 7: has the largest number of microstates associated with it
 - Probability = 6/36 = 0.167
- What is the macrostate with the highest entropy?
 - Again, 7: has the largest number of microstates associated with it
- Entropy of a macrostate is simply a measure of the number of microstates associated with it
- More microstates → Higher Entropy, Higher Probability

	•	••	••	•••	••	::
•	2	3	4	5	6	7
•.	3	4	5	6	7	8
•.	4	5	6	7	8	9
••	5	6	7	8	9	10
•••	6	7	8	9	10	11
	7	8	9	10	11	12

Important Equations

Start with the definition of temperature

Differential Manipulation

• Know these tricks!

- Heat Capacity is the link between *dU* and *dT*
 - If you know the heat capacity and the temperature change, you can find the change in internal energy and the change in entropy

$$C = rac{\partial U}{\partial T} \implies \Delta U = \int_{T_i}^{T_f} C dT$$
 $rac{\partial S}{\partial U} = rac{1}{T} \implies \Delta S = \int rac{dU}{T} = \int_{T_i}^{T_f} rac{C dT}{T}$

Entropy (S) vs. Internal Energy (U)

- Since slope is always positive, temperature is always positive
- More energy = greater entropy
- **Diminishing returns:** it gets harder and harder to increase the entropy as internal energy increases
- Decreasing slope = increasing temperature
 - More energy means greater temperature

Good luck!

Feel free to ask any questions you may have.

You got this!

